skip to main content


Title: On the Incorporation of Nonlinear Resonant Wave‐Particle Interactions Into Radiation Belt Models
Abstract

Wave‐particle resonant interaction is a key process controlling energetic electron flux dynamics in the Earth's radiation belts. All existing radiation belt codes are Fokker‐Planck models relying on the quasi‐linear diffusion theory to describe the impact of wave‐particle interactions. However, in the outer radiation belt, spacecraft often detect waves sufficiently intense to interact resonantly with electrons in the nonlinear regime. In this study, we propose an approach for estimating and including the contribution of such nonlinear resonant interactions into diffusion‐based radiation belt models. We consider electron resonances with whistler‐mode wave‐packets responsible for injected plasma sheet (∼100 keV) electron acceleration to relativistic energies and/or for their precipitation into the atmosphere. Using statistics of chorus wave‐packet amplitudes and sizes (number of wave periods within one packet), we provide a rescaling factor for quasi‐linear diffusion rates, that accounts for the contribution of nonlinear interactions in long‐term electron flux dynamics. Such nonlinear effects may speed up 0.1–1 MeV electron diffusive acceleration by a factor of ×1.5–2 during disturbed periods. We discuss further applications of the proposed approach and the importance of nonlinear resonant interactions for long‐term radiation belt dynamics.

 
more » « less
Award ID(s):
2026375
NSF-PAR ID:
10373412
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Resonant interactions between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves provide an effective loss mechanism for this important electron population in the outer radiation belt. The diffusive regime of electron scattering and loss has been well incorporated into radiation belt models within the framework of the quasi‐linear diffusion theory, whereas the nonlinear regime has been mostly studied with test particle simulations. There is also a less investigated, nonresonant regime of electron scattering by EMIC waves. All three regimes should be present, depending on the EMIC waves and ambient plasma properties, but the occurrence rates of these regimes have not been previously quantified. This study provides a statistical investigation of the most important EMIC wave‐packet characteristics for the diffusive, nonlinear, and nonresonant regimes of electron scattering. We utilize 3 years of observations to derive distributions of wave amplitudes, wave‐packet sizes, and rates of frequency variations within individual wave‐packets. We demonstrate that EMIC waves typically propagate as wave‐packets with ∼10 wave periods each, and that ∼3–10% of such wave‐packets can reach the regime of nonlinear resonant interaction with 2–6 MeV electrons. We show that EMIC frequency variations within wave‐packets reach 50–100% of the center frequency, corresponding to a significant high‐frequency tail in their wave power spectrum. We explore the consequences of these wave‐packet characteristics for high and low energy electron precipitation by H‐band EMIC waves and for the relative importance of quasi‐linear and nonlinear regimes of wave‐particle interactions.

     
    more » « less
  2. Abstract

    Electron resonant interaction with whistler mode waves is traditionally considered as one of the main drivers of radiation belt dynamics. The two main theoretical concepts available for its description are quasi‐linear theory of electron scattering by low‐amplitude waves and nonlinear theory of electron resonant trapping and phase bunching by intense waves. Both concepts successfully describe some aspects of wave‐particle interactions but predict significantly different timescales of relativistic electron acceleration. In this study, we investigate effects that can reduce the efficiency of nonlinear interactions and bridge the gap between the predictions of these two types of models. We examine the effects of random wave phase and frequency variations observed inside whistler mode wave packets on nonlinear interactions. Our results show that phase coherence and frequency fluctuations should be taken into account to accurately model electron nonlinear resonant acceleration and that, along with wave amplitude modulation, they may reduce acceleration rates to realistic, moderate levels.

     
    more » « less
  3. Abstract

    Discovery of the Earth's Van Allen radiation belts by instruments flown on Explorer 1 in 1958 was the first major discovery of the Space Age. The observation of distinct inner and outer zones of trapped megaelectron volt (MeV) particles, primarily protons at low altitude and electrons at high altitude, led to early models for source and loss mechanisms including Cosmic Ray Albedo Neutron Decay for inner zone protons, radial diffusion for outer zone electrons and loss to the atmosphere due to pitch angle scattering. This scattering lowers the mirror altitude for particles in their bounce motion parallel to the Earth's magnetic field until they suffer collisional loss. A view of the belts as quasi‐static inner and outer zones of energetic particles with different sources was modified by observations made during the Solar Cycle 22 maximum in solar activity over 1989–1991. The dynamic variability of outer zone electrons was measured by the Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure that vary with the solar cycle. The launch of the twin Van Allen Probes in August 2012 has provided much longer and more comprehensive measurements during the declining phase of Solar Cycle 24. Roughly half of moderate geomagnetic storms, determined by intensity of the ring current carried mostly by protons at hundreds of kiloelectron volts, produce an increase in trapped relativistic electron flux in the outer zone. Mechanisms for accelerating electrons of hundreds of electron volts stored in the tail region of the magnetosphere to MeVenergies in the trapping region are described in this review: prompt and diffusive radial transport and local acceleration driven by magnetospheric waves. Such waves also produce pitch angle scattering loss, as does outward radial transport, enhanced when the magnetosphere is compressed. While quasilinear simulations have been used to successfully reproduce many essential features of the radiation belt particle dynamics, nonlinear wave‐particle interactions are found to be potentially important for causing more rapid particle acceleration or precipitation. The findings on the fundamental physics of the Van Allen radiation belts potentially provide insights into understanding energetic particle dynamics at other magnetized planets in the solar system, exoplanets throughout the universe, and in astrophysical and laboratory plasmas. Computational radiation belt models have improved dramatically, particularly in the Van Allen Probes era, and assimilative forecasting of the state of the radiation belts has become more feasible. Moreover, machine learning techniques have been developed to specify and predict the state of the Van Allen radiation belts. Given the potential Space Weather impact of radiation belt variability on technological systems, these new radiation belt models are expected to play a critical role in our technological society in the future as much as meteorological models do today.

     
    more » « less
  4. Abstract

    Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4‐5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long‐lasting, drift‐periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up to ∼7.7 MeV in the outer radiation belt, observed by the Van Allen Probes mission. During this March 2017 event, multi‐MeV electron flux oscillations at the electron drift frequency appeared coincidently with enhanced Pc5 ULF wave activity and lasted for over 10 h in the center of the outer belt. The amplitude of such flux oscillations is well correlated with the radial gradient of electron phase space density (PSD), with almost no oscillation observed near the PSD peak. The temporal evolution of the PSD radial profile also suggests the dominant role of radial diffusion in multi‐MeV electron dynamics during this event. By combining these observations, we conclude that these multi‐MeV electron flux oscillations are caused by the resonant interactions between electrons and broadband Pc5 ULF waves and are an indicator of the ongoing radial diffusion process during this event. They contain essential information of radial diffusion and have the potential to be further used to quantify the radial diffusion effects and aid in a better understanding of this prevailing mechanism.

     
    more » « less
  5. Abstract

    Electron losses from the outer radiation belt are typically attributed to resonant electron scattering by whistler‐mode waves. Although the quasi‐linear diffusive regime of such scattering is well understood, the observed waves are often quite intense and in the nonlinear regime of resonant wave‐particle interaction. Such nonlinear resonant interactions are still being actively studied due to their potential for driving fast precipitation. However, direct observations of nonlinear resonance of whistler‐mode waves with electron distributions are scarce. Here, we present evidence for such resonance with high‐resolution electron energy and pitch angle spectra acquired at low‐altitudes by the dual Electron Losses and Fields INvestgation (ELFIN) CubeSats combined with conjugate measurements of equatorial plasma parameters, wave properties, and electron energy spectra by the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric MultiScale missions. ELFIN has obtained numerous conjunction events exhibiting whistler wave driven precipitation; in this study, we present two such events which epitomize signatures of nonlinear resonant scattering. A test particle simulation of electron interactions with intense whistler‐mode waves prescribed at the equator is employed to directly compare modeled precipitation spectra with ELFIN observations. We show that the observed precipitating spectra match expectations to within observational uncertainties of wave amplitude for reasonable assumptions of wave power distribution along the magnetic field line. These results indicate the importance of nonlinear resonant effects when describing intense precipitation patterns of energetic electrons and open the possibility of remotely investigating equatorial wave properties using just properties of precipitation energy and pitch angle spectra.

     
    more » « less