To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h.
Using Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA) satellite observations and ground‐based observations by the THEMIS all‐sky imagers (ASIs) and SuperDARN radars, we determine how the equatorward boundary locations of ring current ions and plasma sheet electrons at pre‐midnight relate to occurrence of strong thermal emission velocity enhancement (STEVE) and intense subauroral ion drifts (SAID) during substorms. We found that the STEVE events are associated with a sharper gradient of electron precipitating flux, lower precipitating ion flux, and a narrower (<1°) latitudinal gap between the equatorward boundaries of trapped ring current ions and precipitating plasma sheet electrons and narrower region‐2 field‐aligned currents (FACs) than for the non‐STEVE events. The narrow gap of the particle boundaries contains intense SAID, higher upflow velocity, lower trough density, and slightly higher electron temperature than those for the non‐STEVE events. The non‐STEVE substorms have much wider gaps between the trapped ions and precipitating electrons, and subauroral polarization streams (SAPS) do not show intense SAID. These results indicate that subauroral flows and downward FACs for the STEVE events can only flow within the latitudinally narrow subauroral low‐conductance region between the ion and electron boundaries, resulting in intense SAID and heating. During the non‐STEVE events, the SAPS flows can flow in the latitudinally wide region without forming intense SAID.
more » « less- Award ID(s):
- 1907698
- PAR ID:
- 10375752
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 125
- Issue:
- 8
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Inner‐magnetospheric conditions for subauroral polarization streams (SAPS) and subauroral ion drifts (SAID) have been investigated statistically using Time History of Events and Macroscale Interactions during Substorms and RBSP observations. We found that plasma sheet electron fluxes at its earthward edge are larger for SAID than SAPS. The ring current ion flux for SAID formed a local maximum near SAID, but the ion flux for SAID was not necessarily larger than for SAPS. The median potential drop across SAID and SAPS is nearly the same, but the potential drop for intense SAID is substantially larger than that for SAPS. The plasmapause is sharper and electromagnetic waves were more intense for SAID. The SAID velocity peak does not strongly correlate with solar wind or geomagnetic indices. These results indicate that local plasma structures are more important for SAPS/SAID velocity characteristics as compared to global magnetospheric conditions.
-
Abstract The role of diffuse electron precipitation in the formation of subauroral polarization streams (SAPS) is investigated with the Multiscale Atmosphere‐Geospace Environment (MAGE) model. Diffuse precipitation is derived from the distribution of drifting electrons. SAPS manifest themselves as a separate mesoscale flow channel in the duskside ionosphere, which gradually merges with the primary auroral convection toward dayside as the equatorward auroral boundary approaches the poleward Region‐2 field‐aligned currents (FACs) boundary. SAPS expand to lower latitudes and toward the nightside during the main phase of a geomagnetic storm, associated with magnetotail earthward plasma flows building up the ring current and intensifying Region‐2 FACs and electron precipitation. SAPS shrink poleward and sunward as the interplanetary magnetic field turns northward. When diffuse precipitation is turned off in a controlled MAGE simulation, ring current and duskside Region‐2 FACs become weaker, but subauroral zonal ion drifts are still comparable to auroral convection. However, subauroral and auroral convection manifest as a single broad flow channel without showing any mesoscale structure. SAPS overlap with the downward Region‐2 FACs equatorward of diffuse precipitation, where poleward electric fields are strong due to a low conductance in the subauroral ionosphere. The Region‐2 FACs extend to latitudes lower than the diffuse precipitation because the ring current protons penetrate closer to the Earth than the electrons do. This study reproduces the key physics of SAPS formation and their evolution in the coupled magnetosphere‐ionosphere during a geomagnetic storm. Diffuse electron precipitation is demonstrated to play a critical role in determining SAPS location and structure.
-
Abstract We present three STEVE (strong thermal emission velocity enhancement) events in conjunction with Time History of Events and Macroscale Interactions (THEMIS) in the magnetosphere and Defense Meteorological Satellite Program (DMSP) and Swarm in the ionosphere, for determining equatorial and interhemispheric signatures of the STEVE purple/mauve arc and picket fence. Both types of STEVE emissions are associated with subauroral ion drifts (SAID), electron heating, and plasma waves. The magnetosphere observations show structured electrons and flows and waves (likely kinetic Alfven, magnetosonic, or lower‐hybrid waves) just outside the plasmasphere. Interestingly, the event with the picket fence had a >~1 keV electron structure detached from the electron plasma sheet, upward field‐aligned currents (FACs), and ultraviolet emissions in the conjugate hemisphere, while the event with only the mauve arc did not have precipitation or ultraviolet emission. We suggest that the electron precipitation drives the picket fence, and heating drives the mauve as thermal emission.
-
Abstract Although Strong Thermal Emission Velocity Enhancement (STEVE) and subauroral ion drifts (SAID) are often considered in the context of geomagnetically disturbed times, we found that STEVE and SAID can occur even during quiet times. Quiet‐time STEVE has the same properties as substorm‐time STEVE, including its purple/mauve color and occurrence near the equatorward boundary of the pre‐midnight auroral oval. Quiet‐time STEVE and SAID emerged during a non‐substorm auroral intensification at or near the poleward boundary of the auroral oval followed by a streamer. Quiet‐time STEVE only lasted a few minutes but can reappear multiple times, and its latitude was much higher than substorm‐time STEVE due to the contracted auroral oval. The THEMIS satellites in the plasma sheet detected dipolarization fronts and fast flows associated with the auroral intensification, indicating that the transient energy release in the magnetotail was the source of quiet‐time STEVE and SAID. Particle injection was weaker and electron temperature was lower than the events without quiet‐time STEVE. The plasmapause extended beyond the geosynchronous orbit, and the ring current and tail current were weak. The interplanetary magnetic field (IMF)
B zwas close to zero, while the IMFB xwas dominant. We suggest that the small energy release in the quiet magnetosphere can significantly impact the flow and field‐aligned current system.