Abstract The sensory neocortex consists of hierarchically-organized areas reciprocally connected via feedforward and feedback circuits. Feedforward connections shape the receptive field properties of neurons in higher areas within parallel streams specialized in processing specific stimulus attributes. Feedback connections have been implicated in top-down modulations, such as attention, prediction and sensory context. However, their computational role remains unknown, partly because we lack knowledge about rules of feedback connectivity to constrain models of feedback function. For example, it is unknown whether feedback connections maintain stream-specific segregation, or integrate information across parallel streams. Using viral-mediated labeling of feedback connections arising from specific cytochrome-oxidase stripes of macaque visual area V2, here we show that feedback to the primary visual cortex (V1) is organized into parallel streams resembling the reciprocal feedforward pathways. This suggests that functionally-specialized V2 feedback channels modulate V1 responses to specific stimulus attributes, an organizational principle potentially extending to feedback pathways in other sensory systems.
more »
« less
Beyond the feedforward sweep: feedback computations in the visual cortex
Abstract Visual perception involves the rapid formation of a coarse image representation at the onset of visual processing, which is iteratively refined by late computational processes. These early versus late time windows approximately map onto feedforward and feedback processes, respectively. State‐of‐the‐art convolutional neural networks, the main engine behind recent machine vision successes, are feedforward architectures. Their successes and limitations provide critical information regarding which visual tasks can be solved by purely feedforward processes and which require feedback mechanisms. We provide an overview of recent work in cognitive neuroscience and machine vision that highlights the possible role of feedback processes for both visual recognition and beyond. We conclude by discussing important open questions for future research.
more »
« less
- Award ID(s):
- 1912280
- PAR ID:
- 10375780
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Annals of the New York Academy of Sciences
- Volume:
- 1464
- Issue:
- 1
- ISSN:
- 0077-8923
- Page Range / eLocation ID:
- p. 222-241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex.more » « less
-
Abstract We build on the existing biased competition view to argue that attention is anemergentproperty of neural computations within and across hierarchically embedded and structurally connected cortical pathways. Critically then, one must ask,what is attention emergent from? Within this framework, developmental changes in the quality of sensory input and feedforward‐feedback information flow shape the emergence and efficiency of attention. Several gradients of developing structural and functional cortical architecture across the caudal‐to‐rostral axis provide the substrate for attention to emerge. Neural activity within visual areas depends on neuronal density, receptive field size, tuning properties of neurons, and the location of and competition between features and objects in the visual field. These visual cortical properties highlight the information processing bottleneck attention needs to resolve. Recurrent feedforward and feedback connections convey sensory information through a series of steps at each level of the cortical hierarchy, integrating sensory information across the entire extent of the cortical hierarchy and linking sensory processing to higher‐order brain regions. Higher‐order regions concurrently provide input conveying behavioral context and goals. Thus, attention reflects the output of a series of complex biased competition neural computations that occur within and across hierarchically embedded cortical regions. Cortical development proceeds along the caudal‐to‐rostral axis, mirroring the flow in sensory information from caudal to rostral regions, and visual processing continues to develop into childhood. Examining both typical and atypical development will offer critical mechanistic insight not otherwise available in the adult stable state. This article is categorized under:Psychology > Attentionmore » « less
-
Speech production is a complex human function requiring continuous feedforward commands together with reafferent feedback processing. These processes are carried out by distinct frontal and temporal cortical networks, but the degree and timing of their recruitment and dynamics remain poorly understood. We present a deep learning architecture that translates neural signals recorded directly from the cortex to an interpretable representational space that can reconstruct speech. We leverage learned decoding networks to disentangle feedforward vs. feedback processing. Unlike prevailing models, we find a mixed cortical architecture in which frontal and temporal networks each process both feedforward and feedback information in tandem. We elucidate the timing of feedforward and feedback–related processing by quantifying the derived receptive fields. Our approach provides evidence for a surprisingly mixed cortical architecture of speech circuitry together with decoding advances that have important implications for neural prosthetics.more » « less
-
Abstract Humans actively observe the visual surroundings by focusing on salient objects and ignoring trivial details. However, computer vision models based on convolutional neural networks (CNN) often analyze visual input all at once through a single feedforward pass. In this study, we designed a dual-stream vision model inspired by the human brain. This model features retina-like input layers and includes two streams: one determining the next point of focus (the fixation), while the other interprets the visuals surrounding the fixation. Trained on image recognition, this model examines an image through a sequence of fixations, each time focusing on different parts, thereby progressively building a representation of the image. We evaluated this model against various benchmarks in terms of object recognition, gaze behavior, and adversarial robustness. Our findings suggest that the model can attend and gaze in ways similar to humans without being explicitly trained to mimic human attention and that the model can enhance robustness against adversarial attacks due to its retinal sampling and recurrent processing. In particular, the model can correct its perceptual errors by taking more glances, setting itself apart from all feedforward-only models. In conclusion, the interactions of retinal sampling, eye movement, and recurrent dynamics are important to human-like visual exploration and inference.more » « less
An official website of the United States government
