Feed-forward convolutional neural networks (CNNs) are currently state-of-the-art for object classification tasks such as ImageNet. Further, they are quantitatively accurate models of temporally-averaged responses of neurons in the primate brain's visual system. However, biological visual systems have two ubiquitous architectural features not shared with typical CNNs: local recurrence within cortical areas, and long-range feedback from downstream areas to upstream areas. Here we explored the role of recurrence in improving classification performance. We found that standard forms of recurrence (vanilla RNNs and LSTMs) do not perform well within deep CNNs on the ImageNet task. In contrast, novel cells that incorporated two structural features, bypassing and gating, were able to boost task accuracy substantially. We extended these design principles in an automated search over thousands of model architectures, which identified novel local recurrent cells and long-range feedback connections useful for object recognition. Moreover, these task-optimized ConvRNNs matched the dynamics of neural activity in the primate visual system better than feedforward networks, suggesting a role for the brain's recurrent connections in performing difficult visual behaviors.
more »
« less
This content will become publicly available on August 18, 2026
A feedforward mechanism for human-like contour integration
Deep neural network models provide a powerful experimental platform for exploring core mechanisms underlying human visual perception, such as perceptual grouping and contour integration—the process of linking local edge elements to arrive at a unified perceptual representation of a complete contour. Here, we demonstrate that feedforward convolutional neural networks (CNNs) fine-tuned on contour detection show this human-like capacity, but without relying on mechanisms proposed in prior work, such as lateral connections, recurrence, or top-down feedback. We identified two key properties needed for ImageNet pre-trained, feed-forward models to yield human-like contour integration: first, progressively increasing receptive field structure served as a critical architectural motif to support this capacity; and second, biased fine-tuning for contour-detection specifically for gradual curves (~20 degrees) resulted in human-like sensitivity to curvature. We further demonstrate that fine-tuning ImageNet pretrained models uncovers other hidden human-like capacities in feed-forward networks, including uncrowding (reduced interference from distractors as the number of distractors increases), which is considered a signature of human perceptual grouping. Thus, taken together these results provide a computational existence proof that purely feedforward hierarchical computations are capable of implementing gestalt “good continuation” and perceptual organization needed for human-like contour-integration and uncrowding. More broadly, these results raise the possibility that in human vision, later stages of processing play a more prominent role in perceptual-organization than implied by theories focused on recurrence and early lateral connections.
more »
« less
- PAR ID:
- 10654566
- Publisher / Repository:
- PLOS Computational Biology
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 21
- Issue:
- 8
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1013391
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantifying how brain functional architecture differs from person to person is a key challenge in human neuroscience. Current individualized models of brain functional organization are based on brain regions and networks, limiting their use in studying fine-grained vertex-level differences. In this work, we present the individualized neural tuning (INT) model, a fine-grained individualized model of brain functional organization. The INT model is designed to have vertex-level granularity, to capture both representational and topographic differences, and to model stimulus-general neural tuning. Through a series of analyses, we demonstrate that (a) our INT model provides a reliable individualized measure of fine-grained brain functional organization, (b) it accurately predicts individualized brain response patterns to new stimuli, and (c) for many benchmarks, it requires only 10–20 minutes of data for good performance. The high reliability, specificity, precision, and generalizability of our INT model affords new opportunities for building brain-based biomarkers based on naturalistic neuroimaging paradigms.more » « less
-
Landmark universal function approximation results for neural networks with trained weights and biases provided the impetus for the ubiquitous use of neural networks as learning models in neuroscience and Artificial Intelligence (AI). Recent work has extended these results to networks in which a smaller subset of weights (e.g., output weights) are tuned, leaving other parameters random. However, it remains an open question whether universal approximation holds when only biases are learned, despite evidence from neuroscience and AI that biases significantly shape neural responses. The current paper answers this question. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can approximate any continuous function on compact sets. We further show an analogous result for the approximation of dynamical systems with recurrent neural networks. Our findings are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on recent fine-tuning methods for large language models, like bias and prefix-based approaches.more » « less
-
When transferring a pretrained model to a downstream task, two popular methods are full fine-tuning (updating all the model parameters) and linear probing (updating only the last linear layer -- the "head"). It is well known that fine-tuning leads to better accuracy in-distribution (ID). However, in this paper, we find that fine-tuning can achieve worse accuracy than linear probing out-of-distribution (OOD) when the pretrained features are good and the distribution shift is large. On 10 distribution shift datasets (Breeds-Living17, Breeds-Entity30, DomainNet, CIFAR → STL, CIFAR10.1, FMoW, ImageNetV2, ImageNet-R, ImageNet-A, ImageNet-Sketch), fine-tuning obtains on average 2% higher accuracy ID but 7% lower accuracy OOD than linear probing. We show theoretically that this tradeoff between ID and OOD accuracy arises even in a simple setting: fine-tuning overparameterized two-layer linear networks. We prove that the OOD error of fine-tuning is high when we initialize with a fixed or random head -- this is because while fine-tuning learns the head, the lower layers of the neural network change simultaneously and distort the pretrained features. Our analysis suggests that the easy two-step strategy of linear probing then full fine-tuning (LP-FT), sometimes used as a fine-tuning heuristic, combines the benefits of both fine-tuning and linear probing. Empirically, LP-FT outperforms both fine-tuning and linear probing on the above datasets (1% better ID, 10% better OOD than full fine-tuning).more » « less
-
When transferring a pretrained model to a downstream task, two popular methods are full fine-tuning (updating all the model parameters) and linear probing (updating only the last linear layer—the “head”). It is well known that fine-tuning leads to better accuracy in-distribution (ID). However, in this paper, we find that fine-tuning can achieve worse accuracy than linear probing out-of-distribution (OOD) when the pretrained features are good and the distribution shift is large. On 10 distribution shift datasets (Breeds-Living17, Breeds-Entity30, DomainNet, CIFAR → STL, CIFAR10.1, FMoW, ImageNetV2, ImageNet-R, ImageNet-A, ImageNet-Sketch), fine-tuning obtains on average 2% higher accuracy ID but 7% lower accuracy OOD than linear probing. We show theoretically that this tradeoff between ID and OOD accuracy arises even in a simple setting: fine-tuning overparameterized two-layer linear networks. We prove that the OOD error of fine-tuning is high when we initialize with a fixed or random head—this is because while fine-tuning learns the head, the lower layers of the neural network change simultaneously and distort the pretrained features. Our analysis suggests that the easy two-step strategy of linear probing then full fine-tuning (LP-FT), sometimes used as a fine-tuning heuristic, combines the benefits of both fine-tuning and linear probing. Empirically, LP-FT outperforms both fine-tuning and linear probing on the above datasets (1% better ID, 10% better OOD than full fine-tuning).more » « less
An official website of the United States government
