skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Open-World Narrative Generation to Answer Players’ Questions
Planning-based narrative generation is effective at producing stories with a logically-sound flow of events, but it can be limiting due to the rigidity of its constraints and the high burden on the domain author to define story-world objects, initial states, and author and character goals. Giving the system the freedom to add objects and events to the story-world history arbitrarily can improve variety and reduce authorial burden, but risks leading to stories that seem jarringly contrived to the audience. I propose to use question-answering as the antidote to contrivance in a highly-generative interactive narrative system: By modeling the player's beliefs about the story world, inferring the implicit questions the player may be asking through their interactions, and answering those questions in a way consistent with the player's prior knowledge, a system could focus on creating cohesion in the ways that matter most to the player while accepting a degree of contrivance in the details that the player is likely to overlook.  more » « less
Award ID(s):
1911053 2145153
PAR ID:
10375791
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
Volume:
18
Issue:
1
ISSN:
2326-909X
Page Range / eLocation ID:
307 to 310
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Creating engaging interactive story-based experiences dynamically responding to individual player choices poses significant challenges for narrative-centered games. Recent advances in pre-trained large language models (LLMs) have the potential to revolutionize procedural content generation for narrative-centered games. Historically, interactive narrative generation has specified pivotal events in the storyline, often utilizing planning-based approaches toward achieving narrative coherence and maintaining the story arc. However, manual authorship is typically used to create detail and variety in non-player character (NPC) interaction to specify and instantiate plot events. This paper proposes SCENECRAFT, a narrative scene generation framework that automates NPC interaction crucial to unfolding plot events. SCENECRAFT interprets natural language instructions about scene objectives, NPC traits, location, and narrative variations. It then employs large language models to generate game scenes aligned with authorial intent. It generates branching conversation paths that adapt to player choices while adhering to the author’s interaction goals. LLMs generate interaction scripts, semantically extract character emotions and gestures to align with the script, and convert dialogues into a game scripting language. The generated script can then be played utilizing an existing narrative-centered game framework. Through empirical evaluation using automated and human assessments, we demonstrate SCENECRAFT’s effectiveness in creating narrative experiences based on creativity, adaptability, and alignment with intended author instructions. 
    more » « less
  2. Interactive narrative in games utilize a combination of dynamic adaptability and predefined story elements to support player agency and enhance player engagement. However, crafting such narratives requires significant manual authoring and coding effort to translate scripts to playable game levels. Advances in pretrained large language models (LLMs) have introduced the opportunity to procedurally generate narratives. This paper presents NarrativeGenie, a framework to generate narrative beats as a cohesive, partially ordered sequence of events that shapes narrative progressions from brief natural language instructions. By leveraging LLMs for reasoning and generation, NarrativeGenie, translates a designer’s story overview into a partially ordered event graph to enable player-driven narrative beat sequencing. Our findings indicate that NarrativeGenie can provide an easy and effective way for designers to generate an interactive game episode with narrative events that align with the intended story arc while at the same time granting players agency in their game experience. We extend our framework to dynamically direct the narrative flow by adapting real-time narrative interactions based on the current game state and player actions. Results demonstrate that NarrativeGenie generates narratives that are coherent and aligned with the designer’s vision. 
    more » « less
  3. Simulationist interactive narrative systems allow game makers to craft reactive stories driven by simulated characters and their social dynamics. These systems produce narrative experiences that feel more emergent but may lack a coherent plot structure. We explored how to combine the emergent possibilities of social simulation with a procedural narrative system that affords writers strong authorial control over the plot. We did this by developing a Unity extension called Anansi that helps people create social simulation-driven visual novels. It enables users to inject simulation data into their story dialogue using logical queries and parameterized storylets written using Ink. The paper describes an overview of our extension and how we empower writers to drive narrative progression using cascading social effects from player choices. 
    more » « less
  4. Narrative generation systems can be classified on a spectrum from strong autonomy to strong story. Systems on the strong autonomy side treat characters as fully independent agents but may struggle to meet the author’s requirements, while those on the strong story side direct character behaviors centrally but may struggle to create the illusion of character believability. In this paper, we use benchmark story generation problems as a framework to compare the spaces of stories that could be generated by prototypical strong story and strong autonomy systems. Comparing the relative solution densities of these spaces helps us quantify how common certain desirable narrative properties are. This can be informative for system designers when deciding, for instance, whether to strictly enforce all desired properties or to generate and filter from a broader class of solutions. 
    more » « less
  5. Narrative planners generate sequences of actions that represent story plots given a story domain model. This is a useful way to create branching stories for interactive narrative systems that maintain logical consistency across multiple storylines with different content. There is a need for story comparison techniques that can enable systems like experience managers and domain authoring tools to reason about similarities and differences between multiple stories or branches. We present an algorithm for summarizing narrative plans as numeric vectors based on a cognitive model of human story perception. The vectors encode important story information and can be compared using standard distance functions to quantify the overall semantic difference between two stories. We show that this distance metric is highly accurate based on human annotations of story similarity, and compare it to several alternative approaches. We also explore variations of our method in an attempt to broaden its applicability to other types of story systems. 
    more » « less