skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 19, 2025

Title: Building Visual Novels with Social Simulation and Storylets
Simulationist interactive narrative systems allow game makers to craft reactive stories driven by simulated characters and their social dynamics. These systems produce narrative experiences that feel more emergent but may lack a coherent plot structure. We explored how to combine the emergent possibilities of social simulation with a procedural narrative system that affords writers strong authorial control over the plot. We did this by developing a Unity extension called Anansi that helps people create social simulation-driven visual novels. It enables users to inject simulation data into their story dialogue using logical queries and parameterized storylets written using Ink. The paper describes an overview of our extension and how we empower writers to drive narrative progression using cascading social effects from player choices.  more » « less
Award ID(s):
2202521
PAR ID:
10590910
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Nature Switzerland
Date Published:
Volume:
15468
Page Range / eLocation ID:
145 to 161
Subject(s) / Keyword(s):
Storylets Tools Social Simulation Unity Visual Novel
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligent interactive narrative systems coordinate a cast of non-player characters to make the overall story experience meaningful for the player. Narrative generation involves a tradeoff between plot-structure requirements and quality of character behavior, as well as computational efficiency. We study this tradeoff using the example of benchmark problems for narrative planning algorithms. A typical narrative planning problem calls for a sequence of actions that leads to an overall plot goal being met, while also requiring each action to respect constraints that create the appearance of character autonomy. We consider simplified solution definitions that enforce only plot requirements or only character requirements, and we measure how often each of these definitions leads to a solution that happens to meet both types of requirements—i.e., the density with which narrative plans occur among plot- or character-requirement-satisfying sequences. We then investigate whether solution densities can guide the selection of narrative planning algorithms. We compare the performance of two search strategies: one that satisfies plot requirements first and checks character requirements afterward, and one that continuously verifies character requirements. Our results show that comparing solution densities does not by itself predict which of these search strategies will be more efficient in terms of search nodes visited, suggesting that other important factors exist. We discuss what some of these factors could be. Our work opens further investigation into characterizing narrative planning algorithms and how they interact with specific domains. The results also highlight the diversity and difficulty of solving narrative planning problems. 
    more » « less
  2. Tullman-Ercek, Danielle (Ed.)
    ABSTRACT A wide range of biological systems, from microbial swarms to bird flocks, display emergent behaviors driven by coordinated movement of individuals. To this end, individual organisms interact by recognizing their kin and adjusting their motility based on others around them. However, even in the best-studied systems, the mechanistic basis of the interplay between kin recognition and motility coordination is not understood. Here, using a combination of experiments and mathematical modeling, we uncover the mechanism of an emergent social behavior in Myxococcus xanthus . By overexpressing the cell surface adhesins TraA and TraB, which are involved in kin recognition, large numbers of cells adhere to one another and form organized macroscopic circular aggregates that spin clockwise or counterclockwise. Mechanistically, TraAB adhesion results in sustained cell-cell contacts that trigger cells to suppress cell reversals, and circular aggregates form as the result of cells’ ability to follow their own cellular slime trails. Furthermore, our in silico simulations demonstrate a remarkable ability to predict self-organization patterns when phenotypically distinct strains are mixed. For example, defying naive expectations, both models and experiments found that strains engineered to overexpress different and incompatible TraAB adhesins nevertheless form mixed circular aggregates. Therefore, this work provides key mechanistic insights into M. xanthus social interactions and demonstrates how local cell contacts induce emergent collective behaviors by millions of cells. IMPORTANCE In many species, large populations exhibit emergent behaviors whereby all related individuals move in unison. For example, fish in schools can all dart in one direction simultaneously to avoid a predator. Currently, it is impossible to explain how such animals recognize kin through brain cognition and elicit such behaviors at a molecular level. However, microbes also recognize kin and exhibit emergent collective behaviors that are experimentally tractable. Here, using a model social bacterium, we engineer dispersed individuals to organize into synchronized collectives that create emergent patterns. With experimental and mathematical approaches, we explain how this occurs at both molecular and population levels. The results demonstrate how the combination of local physical interactions triggers intracellular signaling, which in turn leads to emergent behaviors on a population scale. 
    more » « less
  3. Lelis, Levi; Thue, David (Ed.)
    Previous approaches to narrative generation have required a new planner implementation for each set of constraints deemed relevant to the narrative domain, each consisting of thousands of lines of code and supporting one primary mode of interaction: fully specifying a domain and problem, and receiving a plan as output. We present a lightweight, flexible narrative planner written with Answer Set Programming, designed specifically to support constraint-based narrative generation, show how it generalizes previous approaches, and show how it can be easily extended with notions of thematic plot schema such as “betrayal.” Finally, we demonstrate how the ASP model can be explored through interactive question answering, where answers take the form of generated narratives. In the long term, we intend this work to support understanding of complex rule systems through interactive exploration. 
    more » « less
  4. Motivation is an important factor underlying successful learning. Previous research has demonstrated the positive effects that static interactive narrative games can have on motivation. Concurrently, advances in AI have made dynamic and adaptive approaches to interactive narrative increasingly accessible. However, limited work has explored the impact that dynamic narratives can have on learner motivation. In this paper, we compare two versions of Academical, a choice-based educational interactive narrative game about research ethics. One version employs a traditional hand-authored branching plot (i.e., static narrative) while the other dynamically sequences plots during play (i.e., dynamic narrative). Results highlight the importance of responsive content and a variety of choices for player engagement, while also illustrating the challenge of balancing pedagogical goals with the dynamic aspects of narrative. We also discuss design implications that arise from these findings. Ultimately, this work provides initial steps to illuminate the emerging potential of AI-driven dynamic narrative in educational games. 
    more » « less
  5. Creating engaging interactive story-based experiences dynamically responding to individual player choices poses significant challenges for narrative-centered games. Recent advances in pre-trained large language models (LLMs) have the potential to revolutionize procedural content generation for narrative-centered games. Historically, interactive narrative generation has specified pivotal events in the storyline, often utilizing planning-based approaches toward achieving narrative coherence and maintaining the story arc. However, manual authorship is typically used to create detail and variety in non-player character (NPC) interaction to specify and instantiate plot events. This paper proposes SCENECRAFT, a narrative scene generation framework that automates NPC interaction crucial to unfolding plot events. SCENECRAFT interprets natural language instructions about scene objectives, NPC traits, location, and narrative variations. It then employs large language models to generate game scenes aligned with authorial intent. It generates branching conversation paths that adapt to player choices while adhering to the author’s interaction goals. LLMs generate interaction scripts, semantically extract character emotions and gestures to align with the script, and convert dialogues into a game scripting language. The generated script can then be played utilizing an existing narrative-centered game framework. Through empirical evaluation using automated and human assessments, we demonstrate SCENECRAFT’s effectiveness in creating narrative experiences based on creativity, adaptability, and alignment with intended author instructions. 
    more » « less