Abstract Recent years have seen growing appreciation that rapidly intensifying flash droughts are significant climate hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of event, which would imply that understanding and forecasting flash droughts might require more than one framework. To do this, we first extend and evaluate a soil moisture volatility–based flash drought definition that we introduced in previous work and use it to inventory the onset dates and severity of flash droughts across the contiguous United States (CONUS) for the period 1979–2018. Using this inventory, we examine meteorological and land surface conditions associated with flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies, and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture flash droughts are indeed a composite of distinct types of rapidly intensifying droughts, and that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenomenological pathways. 
                        more » 
                        « less   
                    
                            
                            Trends, Variability, and Drivers of Flash Droughts in the Contiguous United States
                        
                    
    
            Abstract Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio‐environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long‐term flash drought predictions and adaptations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1922687
- PAR ID:
- 10375806
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 58
- Issue:
- 9
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We examine oceanic drivers of widespread droughts over the contiguous United States (herein pan‐CONUS droughts) during the Common Era in what is one of the first analyses of the new Paleo Hydrodynamics Data Assimilation (PHYDA) product. The canonical understanding of oceanic influences on North American hydroclimate suggests that pan‐CONUS droughts are forced by a contemporaneous cold tropical Pacific Ocean and a warm tropical Atlantic Ocean. We test this hypothesis using the paleoclimate record. Composite analyses find a robust association between pan‐CONUS drought events and cold tropical Pacific conditions, but not with warm Atlantic conditions. Similarly, a self‐organizing map analysis shows that pan‐CONUS drought years are most commonly associated with a global sea surface temperature pattern displaying strong La Niña and cold Atlantic Multidecadal Oscillation (AMO) conditions. Our results confirm previous model‐based findings for the instrumental period and show that cold tropical Pacific Ocean conditions are the principal driver of pan‐CONUS droughts on annual timescales.more » « less
- 
            Abstract Droughts are among the most devastating natural hazards, occurring in all regions with different climate conditions. The impacts of droughts result in significant damages annually around the world. While drought is generally described as a slow‐developing hazardous event, a rapidly developing type of drought, the so‐called flash drought has been revealed by recent studies. The rapid onset and strong intensity of flash droughts require accurate real‐time monitoring. Addressing this issue, a Generative Adversarial Network (GAN) is developed in this study to monitor flash droughts over the Contiguous United States (CONUS). GAN contains two models: (a) discriminator and (b) generator. The developed architecture in this study employs a Markovian discriminator, which emphasizes the spatial dependencies, with a modified U‐Net generator, tuned for optimal performance. To determine the best loss function for the generator, four different networks are developed with different loss functions, including Mean Absolute Error (MAE), adversarial loss, a combination of adversarial loss with Mean Square Error (MSE), and a combination of adversarial loss with MAE. Utilizing daily datasets collected from NLDAS‐2 and Standardized Soil Moisture Index (SSI) maps, the network is trained for real‐time daily SSI monitoring. Comparative assessments reveal the proposed GAN's superior ability to replicate SSI values over U‐Net and Naïve models. Evaluation metrics further underscore that the developed GAN successfully identifies both fine‐ and coarse‐scale spatial drought patterns and abrupt changes in the SSI temporal patterns that is important for flash drought identification.more » « less
- 
            null (Ed.)Abstract. The term “flash drought” is frequently invoked to describe droughts thatdevelop rapidly over a relatively short timescale. Despite extensive andgrowing research on flash drought processes, predictability, and trends,there is still no standard quantitative definition that encompasses allflash drought characteristics and pathways. Instead, diverse definitionshave been proposed, supporting wide-ranging studies of flash drought butcreating the potential for confusion as to what the term means and how tocharacterize it. Use of different definitions might also lead to differentconclusions regarding flash drought frequency, predictability, and trendsunder climate change. In this study, we compared five previously publisheddefinitions, a newly proposed definition, and an operational satellite-baseddrought monitoring product to clarify conceptual differences and toinvestigate the sensitivity of flash drought inventories and trends to thechoice of definition. Our analyses indicate that the newly introduced SoilMoisture Volatility Index definition effectively captures flash droughtonset in both humid and semi-arid regions. Analyses also showed thatestimates of flash drought frequency, spatial distribution, and seasonalityvary across the contiguous United States depending upon which definition is used.Definitions differ in their representation of some of the largest and mostwidely studied flash droughts of recent years. Trend analysis indicates thatdefinitions that include air temperature show significant increases in flashdroughts over the past 40 years, but few trends are evident fordefinitions based on other surface conditions or fluxes. These resultsindicate that “flash drought” is a composite term that includes severaltypes of events and that clarity in definition is critical when monitoring,forecasting, or projecting the drought phenomenon.more » « less
- 
            Abstract Flash droughts are rapidly developing subseasonal climate extreme events that are manifested as suddenly decreased soil moisture, driven by increased evaporative demand and/or sustained precipitation deficits. Over each climate region in the contiguous United States (CONUS), we evaluated the forecast skill of weekly root-zone soil moisture (RZSM), evaporative demand (ETo), and relevant flash drought (FD) indices derived from two dynamic models [Goddard Earth Observing System model V2p1 (GEOS-V2p1) and Global Ensemble Forecast System version 12 (GEFSv12)] in the Subseasonal Experiment (SubX) project between years 2000 and 2019 against three reference datasets: Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2), North American Land Data Assimilation System, phase 2 (NLDAS-2), and GEFSv12 reanalysis. The EToand its forcing variables at lead week 1 have moderate-to-high anomaly correlation coefficient (ACC) skill (∼0.70–0.95) except downwelling shortwave radiation, and by weeks 3–4, predictability was low for all forcing variables (ACC < 0.5). RZSM (0–100 cm) for model GEFSv12 showed high skill at lead week 1 (∼0.7–0.85 ACC) in the High Plains, West, Midwest, and South CONUS regions when evaluated against GEFSv12 reanalysis but lower skill against MERRA-2 and NLDAS-2 and ACC skill are still close to 0.5 for lead weeks 3–4, better than EToforecasts. GEFSv12 analysis has not been evaluated against in situ observations and has substantial RZSM anomaly differences when compared to NLDAS-2, and our analysis identified GEFSv12 reforecast prediction limit, which can maximally achieve ACC ∼0.6 for RZSM forecasts between lead weeks 3 and 4. Analysis of major FD events reveals that GEFSv12 reforecast inconsistently captured the correct location of atmospheric and RZSM anomalies contributing to FD onset, suggesting the needs for improving the dynamic models’ assimilation and initialization procedures to improve subseasonal FD predictability. Significance StatementFlash droughts are rapidly developing climate extremes which reduce soil moisture through enhanced evaporative demand and precipitation deficits, and these events can have large impacts on the ecosystem and crop health. We evaluated the subseasonal forecast skill of soil moisture and evaporative demand against three reanalysis datasets and found that evaporative demand skill was similar between forecasts and reanalyses while soil moisture skill is dependent on the reference dataset. Skill of evaporative demand decreases rapidly after week 1, while soil moisture skill declines more slowly after week 1. Case studies for the 2012, 2017, and 2019 United States flash droughts identified that forecasts could capture rapid decreases in soil moisture in some regions but not consistently, implying that long-lead forecasts still need improvements before being used in early warning systems. Improvements in flash drought predictability at longer lead times will require less biased initial conditions, better model parameterizations, and improved representations of large-scale teleconnections.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
