skip to main content

Search for: All records

Award ID contains: 1922687

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding contributions of climate and management intensifications to crop yield trends is essential to better adapt to climate changes and gauge future food security. Here we quantified the synergistic contributions of climate and management intensifications to maize yield trends from 1961 to 2017 in Iowa (United States) using a process-based modeling approach with a detailed climatic and agronomic observation database. We found that climate (management intensifications) contributes to approximately 10% (90%), 26% (74%), and 31% (69%) of the yield trends during 1961–2017, 1984–2013, and 1982–1998, respectively. However, the climate contributions show substantial decadal or multi-decadal variations, with the maximum decadal yield trends induced by temperature or radiation changes close to management intensifications induced trends while considerably larger than precipitation induced trends. Management intensifications can produce more yield gains with increased precipitation but greater losses of yields with increased temperature, with extreme drought conditions diminishing the yield gains, while radiation changes have little effect on yield gains from management intensifications. Under the management condition of recent years, the average trend at the higher warming level was about twice lower than that at the lower warming level, and the sensitivity of yield to warming temperature increased with management intensifications from 1961 to 2017. Due to such synergistic effects, management intensifications must account for global warming and incorporate climate adaptation strategies to secure future crop productions. Additional research is needed to understand how plausible adaptation strategies can mitigate synergistic effects from climate and management intensifications.

    more » « less
  2. Abstract

    Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio‐environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long‐term flash drought predictions and adaptations.

    more » « less
  3. Abstract

    Coronavirus Disease 2019 (COVID‐19) is spreading around the world, and the United States has become the epicenter of the global pandemic. However, little is known about the causes behind the large spatial variability of the COVID‐19 incidence. Here we use path analysis model to quantify the influence of four potential factors (urban vegetation, population density, air temperature, and baseline infection) in shaping the highly heterogeneous transmission patterns of COVID‐19 across the United States. Our results show that urban vegetation can slow down the spread of COVID‐19, and each 1% increase in the percentage of urban vegetation will lead to a 2.6% decrease in cumulative COVID‐19 cases. Additionally, the mediating role of urban vegetation suggests that urban vegetation could reduce increases in cumulative COVID‐19 cases induced by population density and baseline infection. Our findings highlight the importance of urban vegetation in strengthening urban resilience to public health emergencies.

    more » « less
  4. Free, publicly-accessible full text available May 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Iwanowicz, Luke R. (Ed.)
    ABSTRACT Hypervirulent Aeromonas hydrophila (vAh) has emerged as the etiologic agent of epidemic outbreaks of motile Aeromonas septicemia (MAS) in high-density aquaculture of farmed carp in China and catfish in the United States, which has caused millions of tons of lost fish. We conducted a global survey to better understand the evolution, geographical distribution, and phylogeny of vAh. Aeromonas isolates were isolated from fish that showed clinical symptoms of MAS, and pure cultures were screened for the ability to utilize myo -inositol as the sole carbon source. A total of 113 myo- inositol-utilizing bacterial strains were included in this study, including additional strains obtained from previously published culture collections. Based on a gyrB phylogeny, this collection included 66 A. hydrophila isolates, 48 of which were vAh. This collection also included five new vAh isolates from diseased Pangas catfish ( Pangasius pangasius ) and striped catfish ( Pangasianodon hypophthalmus ) obtained in Cambodia and Vietnam, respectively. Genome sequences were generated from representative vAh and non-vAh isolates to evaluate the potential for lateral genetic transfer of the myo- inositol catabolism pathway. Phylogenetic analyses of each of the nine genes required for myo -inositol utilization revealed the close affiliation of vAh strains regardless of geographic origin and suggested lateral genetic transfer of this catabolic pathway from an Enterobacter species. Prediction of virulence factors was conducted to determine differences between vAh and non-vAh strains in terms of virulence and secretion systems. Core genome phylogenetic analyses on vAh isolates and Aeromonas spp. disease isolates (55 in total) were conducted to evaluate the evolutionary relationships among vAh and other Aeromonas sp. isolates, which supported the clonal nature of vAh isolates. IMPORTANCE This global survey of vAh brought together scientists that study fish disease to evaluate the evolution, geographical distribution, phylogeny, and hosts of vAh and other Aeromonas sp. isolates. In addition to vAh isolates from China and the United States, four new vAh isolates were isolated from the lower Mekong River basin in Cambodia and Vietnam, indicating the significant threat of vAh to modern aquaculture and the need for improved biosecurity to prevent vAh spread. 
    more » « less
  7. Edwardsiella ictaluri and Flavobacterium covae are pervasive bacterial pathogens associated with significant losses in catfish aquaculture. Bacterial coinfections have the potential to increase outbreak severity and can worsen on-farm mortality. A preliminary assessment of in vivo bacterial coinfection with E. ictaluri (S97-773) and F. covae (ALG-00-530) was conducted using juvenile channel catfish (Ictalurus punctatus). Catfish were divided into five treatment groups: (1) mock control; (2) E. ictaluri full dose (immersion; 5.4 × 105 CFU mL−1); (3) F. covae full dose (immersion; 3.6 × 106 CFU mL−1); (4) E. ictaluri half dose (immersion; 2.7 × 105 CFU mL−1) followed by half dose F. covae (immersion; 1.8 × 106 CFU mL−1); and (5) F. covae half dose followed by half dose E. ictaluri. In the coinfection challenges, the second inoculum was delivered 48 h after the initial exposure. At 21 days post-challenge (DPC), the single dose E. ictaluri infection yielded a cumulative percent mortality (CPM) of 90.0 ± 4.1%, compared with 13.3 ± 5.9% in the F. covae group. Mortality patterns in coinfection challenges mimicked the single dose E. ictaluri challenge, with CPM of 93.3 ± 5.4% for fish initially challenged with E. ictaluri followed by F. covae, and 93.3 ± 2.7% for fish exposed to F. covae and subsequently challenged with E. ictaluri. Despite similarities in the final CPM within the coinfection groups, the onset of peak mortality was delayed in fish exposed to F. covae first but was congruent with mortality trends in the E. ictaluri challenge. Catfish exposed to E. ictaluri in both the single and coinfected treatments displayed increased serum lysozyme activity at 4-DPC (p < 0.001). Three pro-inflammatory cytokines (il8, tnfα, il1β) were evaluated for gene expression, revealing an increase in expression at 7-DPC in all E. ictaluri exposed treatments (p < 0.05). These data enhance our understanding of the dynamics of E. ictaluri and F. covae coinfections in US farm-raised catfish. 
    more » « less
  8. Abstract. The land of the conterminous United States (CONUS) hasbeen transformed dramatically by humans over the last four centuries throughland clearing, agricultural expansion and intensification, and urban sprawl.High-resolution geospatial data on long-term historical changes in land useand land cover (LULC) across the CONUS are essential for predictiveunderstanding of natural–human interactions and land-based climatesolutions for the United States. A few efforts have reconstructed historicalchanges in cropland and urban extent in the United States since themid-19th century. However, the long-term trajectories of multiple LULCtypes with high spatial and temporal resolutions since the colonial era(early 17th century) in the United States are not available yet. Byintegrating multi-source data, such as high-resolution remote sensingimage-based LULC data, model-based LULC products, and historical censusdata, we reconstructed the history of land use and land cover for theconterminous United States (HISLAND-US) at an annual timescale and 1 km × 1 km spatial resolution in the past 390 years (1630–2020). The results showwidespread expansion of cropland and urban land associated with rapid lossof natural vegetation. Croplands are mainly converted from forest, shrub,and grassland, especially in the Great Plains and North Central regions.Forest planting and regeneration accelerated the forest recovery in theNortheast and Southeast since the 1920s. The geospatial and long-termhistorical LULC data from this study provide critical information forassessing the LULC impacts on regional climate, hydrology, andbiogeochemical cycles as well as achieving sustainable use of land in thenation. The datasets are available at (Li et al., 2022). 
    more » « less