skip to main content


Title: A Meteorology and Snow Data Set From Adjacent Forested and Meadow Sites at Crested Butte, CO, USA
Abstract

We present meteorology and snow observation data collected at sites in the southwestern Colorado Rocky Mountains (USA) over three consecutive water years with different amounts of snow water equivalent (SWE) accumulation: A year with above average SWE (2019), a year with average SWE (2020), and a year with below average SWE (2021). This data set is distinguished by its emphasis on paired open‐forest sites in a continental snow climate. Approximately once a month during February–May, we collected data from 15 to 20 snow pits and took 8 to 19 snow depth transects. Our sampling sites were in open and adjacent forested areas at 3,100 m and in a lower elevation aspen (3,035 m) and higher elevation conifer stand (3,395 m). In total, we recorded 270 individual snow pit density and temperature profiles and over 4,000 snow depth measurements. These data are complimented by continuous meteorological measurements from two weather stations: One in the open and one in the adjacent forest. Meteorology data—including incoming shortwave and longwave radiation, outgoing shortwave radiation, relative humidity, wind speed, snow depth, and air and infrared surface temperature—were quality controlled and the forcing data were gap‐filled. These data are available to download from Bonner, Smyth, et al. (2022) athttps://doi.org/10.5281/zenodo.6618553, at three levels of processing, including a level with downscaled, adjusted precipitation based on data assimilation using observed snow depth and a process‐based snow model. We demonstrate the utility of these data with a modeling experiment that explores open‐forest differences and identifies opportunities for improvements in model representation.

 
more » « less
Award ID(s):
1761441
PAR ID:
10375840
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Canopy‐snow unloading is the complex physical process of snow unloading from the canopy through meltwater drip, sublimation to the atmosphere, or solid snow unloading to the snowpack below. This process is difficult to parameterize due to limited observations. Time‐lapse photographs of snow in the canopy were characterized by citizen scientists to create a data set of snow interception observations at multiple locations across the western United States. This novel interception data set was used to evaluate three snow unloading parameterizations in the Structure for Unifying Multiple Modeling Alternatives (SUMMA) modular hydrologic modeling framework. SUMMA was modified to include a third snow unloading parameterization, termed Wind‐Temperature (Roesch et al., 2001,https://doi.org/10.1007/s003820100153), which includes wind‐dependent and temperature‐dependent unloading functions. It was compared to a meltwater drip unloading parameterization, termed Melt (Andreadis et al., 2009,https://doi.org/10.1029/2008wr007042), and a time‐dependent unloading parameterization, termed Exponential‐Decay (Hedstrom & Pomeroy, 1998,https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4). Wind‐Temperature performed well without calibration across sites, specifically in cold climates, where wind dominates unloading and rime accretion is low. At rime prone sites, Wind‐Temperature should be calibrated to account for longer interception events with less sensitivity to wind, otherwise Melt can be used without calibration. The absence of model physics in Exponential‐Decay requires local calibration that can only be transferred to sites with similar unloading patterns. The choice of unloading parameterization can result in 20% difference in SWE on the ground below the canopy and 10% difference in estimated average winter canopy albedo. These novel observations shed light on processes that are often overlooked in hydrology.

     
    more » « less
  2. Intermittent snow depth observations can be leveraged with data assimilation (DA) to improve model estimates of snow water equivalent (SWE) at the point scale. A key consideration for scaling a DA system to the basin scale is its performance at locations with forest cover – where canopy-snow interactions affect snow accumulation and melt, yet are difficult to model and parameterize. We implement a particle filter (PF) assimilation technique to assimilate intermittent depth observations into the Flexible Snow Model (FSM2), and validate the output against snow density and SWE measurements across paired forest and open sites, at two locations with different climates and forest structures. Assimilation reduces depth error by 70-90%, density error by 5-30%, and SWE error by 50-70% at forest locations (relative to control model runs) and brings errors in-line with adjacent open sites. The PF correctly simulates the seasonal evolution of the snowpack under forest canopy, including cases where interception lowers SWE in the forest during accumulation, and shading reduces melt during the ablation season (relative to open sites). The snow model outputs are sensitive to canopy-related parameters, but DA reduces the range in depth and SWE estimates resulting from spatial variations or uncertainties in these parameters by more than 50%. The results demonstrate that the challenge of accurately measuring, estimating, or calibrating canopy-related parameters is reduced when snow depth observations are assimilated to improve SWE estimates.

     
    more » « less
  3. Abstract

    Understanding how the presence of a forest canopy influences the underlying snowpack is critical to making accurate model predictions of bulk snow density and snow water equivalent (SWE). To investigate the relative importance of forest processes on snow density and SWE, we applied the SUMMA model at three sites representing diverse snow climates in Colorado (USA), Oregon (USA), and Alberta (Canada) for 5 years. First, control simulations were run for open and forest sites. Comparisons to observations showed the uncalibrated model with NLDAS‐2 forcing performed reasonably. Then, experiments were completed to isolate how forest processes affected modelled snowpack density and SWE, including: (1) mass reduction due to interception loss, (2) changes in the phase and amount of water delivered from the canopy to the underlying snow, (3) varying new snow density from reduced wind speed, and (4) modification of incoming longwave and shortwave radiation. Delivery effects (2) increased forest snowpack density relative to open areas, often more than 30%. Mass effects (1) and wind effects (3) decreased forest snowpack density, but generally by less than 6%. The radiation experiment (4) yielded negligible to positive effects (i.e., 0%–10%) on snowpack density. Delivery effects on density were greatest at the warmest times in the season and at the warmest site (Oregon): higher temperatures increased interception and melted intercepted snow, which then dripped to the underlying snowpack. In contrast, mass effects and radiation effects were shown to have the greatest impact on forest‐to‐open SWE differences, yielding differences greater than 30%. The study highlights the importance of delivery effects in models and the need for new types of observations to characterize how canopies influence the flux of water to the snow surface.

     
    more » « less
  4. Abstract

    We present a new grid of cloudy atmosphere and evolution models for substellar objects. These models include the effect of refractory cloud species, including silicate clouds, on the spectra and evolution. We include effective temperatures from 900 to 2400 K and surface gravities from logg= 3.5 to 5.5, appropriate for a broad range of objects with masses between 1 and 84MJ. Model pressure–temperature structures are calculated assuming radiative–convective and chemical equilibrium. We consider the effect of both clouds and metallicity on the atmospheric structure, resulting spectra, and thermal evolution of substellar worlds. We parameterize clouds using the A. S. Ackerman & M. S. Marley cloud model, including cloud parameterfsedvalues from 1 to 8; we include three metallicities (−0.5, 0.0, and +0.5). Refractory clouds and metallicity both alter the evolution of substellar objects, changing the inferred temperature at a given age by up to 100–200 K. For solar-metallicity evolution models including clouds in warm objects, we find a hydrogen-burning minimum mass of 70.2MJ, close to empirical measurements; we find a deuterium-burning minimum mass of 12.05MJ(50% of initial D burned). We compare to the observed photometry of brown dwarfs, finding broad agreement with the measured photometry. We publish the spectra, evolution, and other data products online with open access on Zenodo (doi:10.5281/zenodo.12735103).

     
    more » « less
  5. This dataset contains meteorology and snow observation data collected at sites in the southwestern Colorado Rocky Mountains during water years 2019-2021. Data collection had an emphasis on paired open-forest sites and included three forested elevations. In total, we present 270 snow pit observations, 4,019 snow depth measurements, and three years of meteorological forcing from two weather stations (one in a meadow, the other in an adjacent forest). The dataset is described in a forthcoming publication of the same name: A meteorology and snow dataset from adjacent forested and meadow sites at Crested Butte, CO, USA (Bonner et al., 2022).

    All snow observation and meteorological forcing data are available as both .nc and .mat files.
    Additionally, original digitized copies of snow pit observations are provided as .gsheet/.xlxs files.

    This dataset will continue to be updated, via this repository, as additional years of data are collected.

     
    more » « less