skip to main content


Title: Quantitative multi-image analysis in metals research
Abstract

Quantitative multi-image analysis (QMA) is the systematic extraction of new information and insight through the simultaneous analysis of multiple, related images. We present examples illustrating the potential for QMA to advance materials research in multi-image characterization, automatic feature identification, and discovery of novel processing-structure–property relationships. We conclude by discussing opportunities and challenges for continued advancement of QMA, including instrumentation development, uncertainty quantification, and automatic parsing of literature data.

Graphical abstract

 
more » « less
Award ID(s):
2004752
NSF-PAR ID:
10375852
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Cambridge University Press (CUP)
Date Published:
Journal Name:
MRS Communications
Volume:
12
Issue:
6
ISSN:
2159-6867
Page Range / eLocation ID:
p. 1030-1036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fluorescence fluctuation spectroscopy (FFS) encompasses a bevy of techniques that involve analyzing fluorescence intensity fluctuations occurring due to fluorescently labeled molecules diffusing in and out of a microscope's focal region. Statistical analysis of these fluctuations may reveal the oligomerization (i.e., association) state of said molecules. We have recently developed a new FFS‐based method, termed Two‐Dimensional Fluorescence Intensity Fluctuation (2D FIF) spectrometry, which provides quantitative information on the size and stability of protein oligomers as a function of receptor concentration. This article describes protocols for employing FIF spectrometry to quantify the oligomerization of a membrane protein of interest, with specific instructions regarding cell preparation, image acquisition, and analysis of images given in detail. Application of the FIF Spectrometry Suite, a software package designed for applying FIF analysis on fluorescence images, is emphasized in the protocol. Also discussed in detail is the identification, removal, and/or analysis of inhomogeneous regions of the membrane that appear as bright spots. The 2D FIF approach is particularly suited to assess the effects of agonists and antagonists on the oligomeric size of membrane receptors of interest. © 2022 Wiley Periodicals LLC.

    Basic Protocol 1: Preparation of live cells expressing protein constructs

    Basic Protocol 2: Image acquisition and noise correction

    Basic Protocol 3: Drawing and segmenting regions of interest

    Basic Protocol 4: Calculating the molecular brightness and concentration of individual image segments

    Basic Protocol 5: Combining data subsets using a manual procedure (Optional)

    Alternate Protocol 1: Combining data subsets using the advanced FIF spectrometry suite (Optional; alternative to Basic Protocol 5)

    Basic Protocol 6: Performing meta‐analysis of brightness spectrograms

    Alternate Protocol 2: Performing meta‐analysis of brightness spectrograms (alternative to Basic Protocol 6)

    Basic Protocol 7: Spot extraction and analysis using a manual procedure or by writing a program (Optional)

    Alternate Protocol 3: Automated spot extraction and analysis (Optional; alternative to Protocol 7)

    Support Protocol: Monomeric brightness determination

     
    more » « less
  2. Abstract

    ImageJ and CellProfiler have long been leading open‐source platforms in the field of bioimage analysis. ImageJ's traditional strength is in single‐image processing and investigation, while CellProfiler is designed for building large‐scale, modular analysis pipelines. Although many image analysis problems can be well solved with one or the other, using these two platforms together in a single workflow can be powerful. Here, we share two pipelines demonstrating mechanisms for productively and conveniently integrating ImageJ and CellProfiler for (1) studying cell morphology and migration via tracking, and (2) advanced stitching techniques for handling large, tiled image sets to improve segmentation. No single platform can provide all the key and most efficient functionality needed for all studies. While both programs can be and are often used separately, these pipelines demonstrate the benefits of using them together for image analysis workflows. ImageJ and CellProfiler are both committed to interoperability between their platforms, with ongoing development to improve how both are leveraged from the other. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Studying cell morphology and cell migration in time‐lapse datasets using TrackMate (Fiji) and CellProfiler

    Basic Protocol 2: Creating whole plate montages to easily assess adaptability of segmentation parameters

     
    more » « less
  3. Abstract

    Taking advantage of the recent developments in machine learning, we propose an approach to automatic winter hydrometeor classification based on utilization of convolutional neural networks (CNNs). We describe the development, implementation, and evaluation of a method and tool for classification of snowflakes based on geometric characteristics and riming degree, respectively, obtained using CNNs from high-resolution images by a Multi-Angle Snowflake Camera (MASC). These networks are optimal for image classification of winter precipitation particles due to their high accuracy, computational efficiency, automatic feature extraction, and application versatility. They require little initial preparation, enable the use of smaller training sets through transfer learning techniques, come with large supporting communities and a wealth of resources available, and can be applied and operated by nonexperts. We illustrate both the ease of implementation and the usefulness of operation the CNN architecture offers as a tool for researchers and practitioners utilizing in situ optical observational devices. A training dataset containing 1450 MASC images is developed primarily from two storm events in December 2014 and February 2015 in Greeley, Colorado, by visual inspection of recognizable snowflake geometries. Defined geometric classes are aggregate, columnar crystal, planar crystal, small particle, and graupel. The CNN trained on this dataset achieves a mean accuracy of 93.4% and displays excellent generalization (ability to classify new data). In addition, a separate training dataset is developed by sorting snowflakes into three classes and showcasing distinct degrees of riming. The CNN riming degree estimator yields promising initial results but would benefit from larger training sets.

     
    more » « less
  4. ABSTRACT BACKGROUND AND PURPOSE

    Neurosurgical resection is one of the few opportunities researchers have to image the human brain pre‐ and postfocal damage. A major challenge associated with brains undergoing surgical resection is that they often do not fit brain templates most image‐processing methodologies are based on. Manual intervention is required to reconcile the pathology, requiring time investment and introducing reproducibility concerns, and extreme cases must be excluded.

    METHODS

    We propose an automatic longitudinal pipeline based on High Angular Resolution Diffusion Imaging acquisitions to facilitate a Pathway Lesion Symptom Mapping analysis relating focal white matter injury to functional deficits. This two‐part approach includes (i) automatic segmentation of focal white matter injury from anisotropic power differences, and (ii) modeling disconnection using tractography on the single‐subject level, which specifically identifies the disconnections associated with focal white matter damage.

    RESULTS

    The advantages of this approach stem from (1) objective and automatic lesion segmentation and tractogram generation, (2) objective and precise segmentation of affected tissue likely to be associated with damage to long‐range white matter pathways (defined by anisotropic power), (3) good performance even in the cases of anatomical distortions by use of nonlinear tensor‐based registration, which aligns images using an approach sensitive to white matter microstructure.

    CONCLUSIONS

    Mapping a system as variable and complex as the human brain requires sample sizes much larger than the current technology can support. This pipeline can be used to execute large‐scale, sufficiently powered analyses by meeting the need for an automatic approach to objectively quantify white matter disconnection.

     
    more » « less
  5. Abstract

    Deep neural networks such as GoogLeNet, ResNet, and BERT have achieved impressive performance in tasks such as image and text classification. To understand how such performance is achieved, we probe a trained deep neural network by studying neuron activations, i.e.combinations of neuron firings, at various layers of the network in response to a particular input. With a large number of inputs, we aim to obtain a global view of what neurons detect by studying their activations. In particular, we develop visualizations that show the shape of the activation space, the organizational principle behind neuron activations, and the relationships of these activations within a layer. Applying tools from topological data analysis, we presentTopoAct, a visual exploration system to study topological summaries of activation vectors. We present exploration scenarios usingTopoActthat provide valuable insights into learned representations of neural networks. We expectTopoActto give a topological perspective that enriches the current toolbox of neural network analysis, and to provide a basis for network architecture diagnosis and data anomaly detection.

     
    more » « less