skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures
Abstract Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.  more » « less
Award ID(s):
2053929
PAR ID:
10375857
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Intelligent Manufacturing
Volume:
34
Issue:
1
ISSN:
0956-5515
Page Range / eLocation ID:
p. 315-329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the heat flux in the part. For instance, constrained heat flux because of ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. Existing non-proprietary approaches to predict the heat flux in AM at the part-level predominantly use mesh-based finite element analyses that are computationally tortuous — the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational thermal models to predict the heat flux, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared to finite element analysis techniques, the proposed mesh-free graph theory-based approach facilitates layer-by-layer simulation of the heat flux within a few minutes on a desktop computer. To explore these assertions we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach, with finite element analysis and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the layer-by-layer deposition of three part geometries in a laser powder bed fusion metal AM process with: (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the heat flux predictions from the last two approaches with a commercial solution. From the first study we report that the heat flux trend approximated by the graph theory approach is found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the heat flux trends predicted for the AM parts using graph theory approach agrees with finite element analysis with error less than 15%. More pertinently, the computational time for predicting the heat flux was significantly reduced with graph theory, for instance, in one of the AM case studies the time taken to predict the heat flux in a part was less than 3 minutes using the graph theory approach compared to over 3 hours with finite element analysis. While this paper is restricted to theoretical development and verification of the graph theory approach for heat flux prediction, our forthcoming research will focus on experimental validation through in-process sensor-based heat flux measurements. 
    more » « less
  2. Abstract This work pertains to the laser powder bed fusion (LPBF) additive manufacturing process. The goal of this work is to mitigate the expense and time required for qualification of laser powder bed fusion processed parts. In pursuit of this goal, the objective of this work is to develop and apply a physics-based model predictive control strategy to modulate the thermal history before the part is built. The key idea is to determine a desired thermal history for a given part a priori to printing using a physics-based model. Subsequently, a model predictive control strategy is developed to attain the desired thermal history by changing the laser power layer-by-layer. This is an important area of research because the spatiotemporal distribution of temperature within the part (also known as the thermal history) influences flaw formation, microstructure evolution, and surface/geometric integrity, all of which ultimately determine the mechanical properties of the part. Currently, laser powder bed fusion parts are qualified using a build-and-test approach wherein parameters are optimized by printing simple test coupons, followed by examining their properties via materials characterization and testing — a cumbersome and expensive process that often takes years. These parameters, once optimized, are maintained constant throughout the process for a part. However, thermal history is a function of over 50 processing parameters including material properties and part design, consequently, the current approach of parameter optimization based on empirical testing of simple test coupons seldom transfers successfully to complex, practical parts. Rather than instinctive process parameter optimization, the model predictive control strategy presents a radically different approach to LPBF part qualification that is based on understanding and modulating the causal thermal physics of the process. The approach has three steps: (Step 1) Predict – given a part geometry, use a rapid, mesh-less physics-based simulation model to predict its thermal history, analyze the predicted thermal history trend, isolate potential red flag problems such as heat buildup, and set a desired thermal history that corrects deleterious trends. (Step 2) Parse – iteratively simulate the thermal history as a function of various laser power levels layer-by-layer over a fixed time horizon. (Step 3) Select – the laser power that provides the closest match to the desired thermal history. Repeat Steps 2 and 3 until the part is completely built. We demonstrate through experiments with various geometries two advantages of this model predictive control strategy when applied to laser powder bed fusion: (i) prevent part failures due to overheating and distortion, while mitigating the need for anchoring supports; and (ii) improve surface integrity of hard to access internal surfaces. 
    more » « less
  3. Abstract The main research goal of this study is to decipher the intercorrelation between process-induced thermal-structure-property relationships of Stainless Steel 316L fabricated by laser powder bed fusion. The objective therein is achieved by explaining and quantifying the effect of processing parameters and part-scale thermal history on microstructure evolution and mechanical properties of these parts. Multiple previous works have correlated the effect of process parameters on flaw formation, microstructural features evolved and functional properties; however, a lack of understanding remains in the underlying effect of the thermal history on part microstructure and mechanical properties. The thermal distribution, or thermal history, of the part as it is being built layer-by-layer is influenced by the processing parameters, material properties and shape of the part. The thermal history influences the microstructure by changing the grain structure evolution, which affects the part properties. Therefore, the novelty of this paper lies in illuminating the process-thermal history-microstructure-property relationship in laser powder bed fusion. Characterization of tensile specimens processed at a variety of conditions reveal a direct influence of the choice of process parameters on the dendritic structure and the grain orientations. A high energy density leads to <100> textured columnar dendritic grains and low energy density leads to randomly oriented equiaxed grains as a result of the shifting heat influx. The tensile properties are correlated with the inherent microstructure. Through future work involving fracture surface analysis, the texture, grain size and porosity is expected to influence the inherent fracture mechanism. This work demonstrates that an understanding of thermal distribution within a printed part can inform the choice of processing conditions to generate the final microstructure as per the specified functional requirements. Thus, this paper lays the foundation for future prediction and control of microstructure and functional properties in laser powder bed fusion by identifying the root fundamental thermal phenomena that influences the microstructure evolution and part properties. 
    more » « less
  4. The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatiotemporal distribution of temperature, also called the thermal field or temperature history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the temperature distribution in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the nature of temperature distribution in the part. For instance, steep thermal gradients created in the part during printing leads to defects, such as warping and thermal stress-induced cracking. Existing nonproprietary approaches to predict the temperature distribution in AM parts predominantly use mesh-based finite element analyses that are computationally tortuous—the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational models to predict the temperature distribution, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared with finite element analyses techniques, the proposed mesh-free graph theory-based approach facilitates prediction of the temperature distribution within a few minutes on a desktop computer. To explore these assertions, we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach with finite element analysis, and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume and (2) simulating the laser powder bed fusion metal AM of three-part geometries with (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the thermal trends predicted from the last two approaches with a commercial solution. From the first study, we report that the thermal trends approximated by the graph theory approach are found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the thermal trends predicted for the AM parts using graph theory approach agree with finite element analyses, and the computational time for predicting the temperature distribution was significantly reduced with graph theory. For instance, for one of the AM part geometries studied, the temperature trends were predicted in less than 18 min within 10% error using the graph theory approach compared with over 180 min with finite element analyses. Although this paper is restricted to theoretical development and verification of the graph theory approach, our forthcoming research will focus on experimental validation through in-process thermal measurements. 
    more » « less
  5. Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock. VED has been traditionally used to inform the quality of the printed part but different values of VED are presented as optimal values for certain material systems. An optimal VED value can be maintained by changing the key process parameters so that various combinations yield a constant value. In this study, an optimal constant VED value is maintained while printing SS316L with variable key processing parameters. Porosity analysis is performed using optical microscopy, as well as X-ray computed tomography, to reveal the volume density and distribution of those pores. Two primary defect categories are identified, namely lack of fusion and porosity induced by balling defects. The findings indicate that, even at optimal VED, variations in process parameters can significantly influence defect type, underscoring the sensitivity of defect formation to the variation of these parameters. Furthermore, a minor change in the build rate, driven by adjustments in process parameters, was found to influence defect categories. These findings emphasize that fine tuning the process parameters and build rate is essential to minimize defects. Finally, fiducial marks have been identified as a source of unintentional porosity defects. These results enable the refinement of process parameters, ultimately optimizing LPBF to achieve enhanced material density and expedite the printing. 
    more » « less