skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging systems and techniques for fusion-based metal additive manufacturing: a review
This study presents an overview and a few case studies to explicate the transformative power of diverse imaging techniques for smart manufacturing, focusing largely on variousin-situandex-situimaging methods for monitoring fusion-based metal additive manufacturing (AM) processes such as directed energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM).In-situimaging techniques, encompassing high-speed cameras, thermal cameras, and digital cameras, are becoming increasingly affordable, complementary, and are emerging as vital for real-time monitoring, enabling continuous assessment of build quality. For example, high-speed cameras capture dynamic laser-material interaction, swiftly detecting defects, while thermal cameras identify thermal distribution of the melt pool and potential anomalies. The data gathered fromin-situimaging are then utilized to extract pertinent features that facilitate effective control of process parameters, thereby optimizing the AM processes and minimizing defects. On the other hand,ex-situimaging techniques play a critical role in comprehensive component analysis. Scanning electron microscopy (SEM), optical microscopy, and 3D-profilometry enable detailed characterization of microstructural features, surface roughness, porosity, and dimensional accuracy. Employing a battery of Artificial Intelligence (AI) algorithms, information from diverse imaging and other multi-modal data sources can be fused, and thereby achieve a more comprehensive understanding of a manufacturing process. This integration enables informed decision-making for process optimization and quality assurance, as AI algorithms analyze the combined data to extract relevant insights and patterns. Ultimately, the power of imaging in additive manufacturing lies in its ability to deliver real-time monitoring, precise control, and comprehensive analysis, empowering manufacturers to achieve supreme levels of precision, reliability, and productivity in the production of components.  more » « less
Award ID(s):
1849085
PAR ID:
10488814
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Manufacturing Technology
Volume:
3
ISSN:
2813-0359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Automated optical inspection (AOI) is increasingly advocated for in situ quality monitoring of additive manufacturing (AM) processes. The availability of layerwise imaging data improves the information visibility during fabrication processes and is thus conducive to performing online certification. However, few, if any, have investigated the high-speed contact image sensors (CIS) (i.e., originally developed for document scanners and multifunction printers) for AM quality monitoring. In addition, layerwise images show complex patterns and often contain hidden information that cannot be revealed in a single scale. A new and alternative approach will be to analyze these intrinsic patterns with multiscale lenses. Therefore, the objective of this article is to design and develop an AOI system with contact image sensors for multiresolution quality inspection of layerwise builds in additive manufacturing. First, we retrofit the AOI system with contact image sensors in industrially relevant 95 mm/s scanning speed to a laser-powder-bed-fusion (LPBF) machines. Then, we design the experiments to fabricate nine parts under a variety of factor levels (e.g., gas flow blockage, re-coater damage, laser power changes). In each layer, the AOI system collects imaging data of both recoating powder beds before the laser fusion and surface finishes after the laser fusion. Second, layerwise images are pre-preprocessed for alignment, registration, and identification of regions of interests (ROIs) of these nine parts. Then, we leverage the wavelet transformation to analyze ROI images in multiple scales and further extract salient features that are sensitive to process variations, instead of extraneous noises. Third, we perform the paired comparison analysis to investigate how different levels of factors influence the distribution of wavelet features. Finally, these features are shown to be effective in predicting the extent of defects in the computed tomography (CT) data of layerwise AM builds. The proposed framework of multiresolution quality inspection is evaluated and validated using real-world AM imaging data. Experimental results demonstrated the effectiveness of the proposed AOI system with contact image sensors for online quality inspection of layerwise builds in AM processes. 
    more » « less
  2. This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations. Design/methodology/approachThis study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques. FindingsA comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions. Originality/valueBased on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain. 
    more » « less
  3. null (Ed.)
    Additive manufacturing (AM) comprises a group of transformative technologies that are likely to revolutionize manufacturing. In particular, laser-based metal AM techniques can not only fabricate parts with extreme complexity, but also provide innovative means for designing and processing new metallic systems. However, there are still several technical barriers that constrain metal AM. Overcoming these barriers requires a better understanding of the physics underlying the complex and dynamic laser–metal interaction at the heart of many AM processes. This article briefly describes the state of the art of in situ / operando synchrotron x-ray imaging and diffraction for studying metal AM, mostly the laser powder-bed fusion process. It highlights the immediate impact of operando synchrotron studies on the advancement of AM technologies, and presents future research challenges and opportunities. 
    more » « less
  4. null (Ed.)
    Abstract Laser-based additive manufacturing (LBAM) provides unrivalled design freedom with the ability to manufacture complicated parts for a wide range of engineering applications. Melt pool is one of the most important signatures in LBAM and is indicative of process anomalies and part defects. High-speed thermal images of the melt pool captured during LBAM make it possible for in situ melt pool monitoring and porosity prediction. This paper aims to broaden current knowledge of the underlying relationship between process and porosity in LBAM and provide new possibilities for efficient and accurate porosity prediction. We present a deep learning-based data fusion method to predict porosity in LBAM parts by leveraging the measured melt pool thermal history and two newly created deep learning neural networks. A PyroNet, based on Convolutional Neural Networks, is developed to correlate in-process pyrometry images with layer-wise porosity; an IRNet, based on Long-term Recurrent Convolutional Networks, is developed to correlate sequential thermal images from an infrared camera with layer-wise porosity. Predictions from PyroNet and IRNet are fused at the decision-level to obtain a more accurate prediction of layer-wise porosity. The model fidelity is validated with LBAM Ti–6Al–4V thin-wall structure. This is the first work that manages to fuse pyrometer data and infrared camera data for metal additive manufacturing (AM). The case study results based on benchmark datasets show that our method can achieve high accuracy with relatively high efficiency, demonstrating the applicability of the method for in situ porosity detection in LBAM. 
    more » « less
  5. Abstract Dynamic solidification behavior during metal additive manufacturing directly influences the as-built microstructure, defects, and mechanical properties of printed parts. How the formation of these features is driven by temperature variation (e.g., thermal gradient magnitude and solidification front velocity) has been studied extensively in metal additive manufacturing, with synchrotron x-ray imaging becoming a critical tool to monitor these processes. Here, we extend these efforts to monitoring full thermomechanical deformation during solidification through the use of operando x-ray diffraction during laser melting. With operando diffraction, we analyze thermomechanical deformation modes such as torsion, bending, fragmentation, assimilation, oscillation, and interdendritic growth. Understanding such phenomena can aid the optimization of printing strategies to obtain specific microstructural features, including localized misorientations, dislocation substructure, and grain boundary character. The interpretation of operando diffraction results is supported by post-mortem electron backscatter diffraction analyses. 
    more » « less