skip to main content

Title: Regimes of Sea‐Ice Floe Melt: Ice‐Ocean Coupling at the Submesoscales

Marginal ice zones are composed of discrete sea‐ice floes, whose dynamics are not well captured by the continuum representation of sea ice in most climate models. This study makes use of an ocean large eddy simulation (LES) model, coupled to cylindrical sea‐ice floes, to investigate thermal and mechanical interactions between melt‐induced submesoscale features and sea‐ice floes, during summer conditions. We explore the sensitivity of sea‐ice melt rates and upper‐ocean turbulence properties to floe size, ice‐ocean drag, and surface winds. Under low wind conditions, upper ocean turbulence transports warm cyclonic filaments from the open ocean toward the center of the floes and enhances their basal melt. This heat transport is partially suppressed by trapping of ice within cold anticyclonic features. When winds are stronger, melt rates are enhanced by the decoupling of floes from the cold, melt‐induced lens underneath sea ice. Distinct dynamical regimes emerge in which the influence of warm filaments on sea‐ice melt is mitigated by the strength of ice‐ocean coupling and eddy size relative to floe size. Simple scaling laws, which may help parameterize these processes in coarse continuum‐based sea‐ice models, successfully capture floe melt rates under these limiting regimes.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ocean heat exchanges at the marginal ice zone (MIZ) play an important role in melting sea ice. Mixed‐layer eddies transport heat and ice floes across the MIZ, facilitating the pack's access to warm waters. This study explores these frontal dynamics using disk‐shaped floes coupled to an upper‐ocean model simulating the sea ice edge. Numerical experiments reveal that small floes respond more strongly to fine‐scale ocean currents, which favors higher dispersion rates and weakens sea ice drag onto the underlying ocean. Floes with radii smaller than resolved turbulent filaments (∼2–4 km) result in a wider and more energetic MIZ, by a factor of 70% each, compared to larger floes. We hypothesize that this floe size dependency may affect sea ice break‐up by controlling oceanic energy propagation into the MIZ and modulate the sea ice pack's melt rate by regulating lateral heat transport toward the sea ice cover.

    more » « less
  2. Abstract

    Arctic sea ice extent continues to decline at an unprecedented rate that is commonly underestimated by climate projection models. This disagreement may imply biases in the representation of processes that bring heat to the sea ice in these models. Here we reveal interactions between ocean-ice heat fluxes, sea ice cover, and upper-ocean eddies that constitute a positive feedback missing in climate models. Using an eddy-resolving global ocean model, we demonstrate that ocean-ice heat fluxes are predominantly induced by localized and intermittent ocean eddies, filaments, and internal waves that episodically advect warm subsurface waters into the mixed layer where they are in direct contact with sea ice. The energetics of near-surface eddies interacting with sea ice are modulated by frictional dissipation in ice-ocean boundary layers, being dominant under consolidated winter ice but substantially reduced under low-concentrated weak sea ice in marginal ice zones. Our results indicate that Arctic sea ice loss will reduce upper-ocean dissipation, which will produce more energetic eddies and amplified ocean-ice heat exchange. We thus emphasize the need for sea ice-aware parameterizations of eddy-induced ice-ocean heat fluxes in climate models.

    more » « less
  3. Abstract

    Changes in the rate of ocean‐driven basal melting of Antarctica's ice shelves can alter the rate at which the grounded ice sheet loses mass and contributes to sea level change. Melt rates depend on the inflow of ocean heat, which occurs through steady circulation and eddy fluxes. Previous studies have demonstrated the importance of eddy fluxes for ice shelves affected by relatively warm intrusions of Circumpolar Deep Water. However, ice shelves on cold water continental shelves primarily melt from dense shelf water near the grounding line and from light surface water at the ice shelf front. Eddy effects on basal melt of these ice shelves have not been studied. We investigate where and when a regional ocean model of the Ross Sea resolves eddies and determine the effect of eddy processes on basal melt. The size of the eddies formed depends on water column stratification and latitude. We use simulations at horizontal grid resolutions of 5 and 1.5 km and, in the 1.5‐km model, vary the degree of topography smoothing. The higher‐resolution models generate about 2–2.5 times as many eddies as the low‐resolution model. In all simulations, eddies cross the ice shelf front in both directions. However, there is no significant change in basal melt between low‐ and high‐resolution simulations. We conclude that higher‐resolution models (<1 km) are required to better represent eddies in the Ross Sea but hypothesize that basal melt of the Ross Ice Shelf is relatively insensitive to our ability to fully resolve the eddy field.

    more » « less
  4. Abstract

    The atmospheric and surface conditions during a late autumnal strong katabatic wind event were quantified using ship and rawinsonde measurements over the Terra Nova Bay coastal polynya. Wind speeds decreased from 35 to 18 ms−1, while the wind direction decreased 18° over the distance from the Nansen Ice Shelf edge out 99 km eastward toward the Ross Sea. Maximum velocity winds (jet cores) at 173, 238, 179 and 144 m elevation were associated with atmospheric boundary layers capped by temperature inversions with bases at 294, 325, 226 and 196 m elevation. The tops of the inversion layers (near 700 m at all locations) also marked the top of the katabatic wind layer. Boundary layer air temperature and specific humidity increased from −31 to −21°C and 0.1 to 0.6 gkg−1, respectively, in response to the warm polynya surface. The air at 15 ± 8 m elevation was saturated with respect to ice, causing supersaturation and snow growth where the air parcels become cooler in the upper atmospheric boundary layer. The surface was characterized by three zones, a fluid zone (open ocean, frazil, shuga and pancake floes), an accumulation zone (fused, rafted and compressed pancake floes) and a young floe zone (large floes). The surface temperature varied from freezing (−1.7°C) in the fluid zone to near air temperature (−20°C) in the floe zone with the largest horizontal surface temperature gradient occurring in the transition between the fluid zone and the accumulation zone, and at the edges of leads in the floe zone.

    more » « less
  5. Abstract Under-ice eddies are prevalent in the major circulation system in the western Arctic Ocean, the Beaufort Gyre. Theoretical studies hypothesize that the eddy-driven overturning and the ice-ocean drag are crucial mechanisms of the gyre equilibration in response to atmospheric winds. However, due to severe weather conditions and limitations of remote sensing instruments, there are only sparse eddy observations in the ice-covered Arctic Ocean. Hence, the evolution of the under-ice eddy field, its impact on the gyre variability, and their mutual response to the ongoing Arctic warming remain uncertain. Here, we infer the characteristics of the under-ice eddy field by establishing its tight connection to the angular velocities of isolated spinning sea ice floes in marginal ice zones. Using over two decades of satellite observations of marginal ice zones in the western Arctic Ocean, we identified and tracked thousands of floes and used idealized eddy modeling to infer the interannual evolution of the eddy energetics underneath the ice. We find that the eddy field is strongly correlated to the strength of the Beaufort Gyre on interannual timescales, which provides the major observational evidence consistent with the hypothesis of the gyre equilibration by eddies. The inferred trends over the past two decades signify that the gyre and its eddy field have been intensifying as the sea ice cover has been declining. Our results imply that with continuing sea ice decline, the eddy field and the Beaufort Gyre will keep intensifying and leading to enhanced transport of freshwater and biogeochemical tracers. 
    more » « less