Abstract The rapid Arctic sea ice retreat in the early 21stcentury is believed to be driven by several dynamic and thermodynamic feedbacks, such as ice-albedo feedback and water vapor feedback. However, the role of clouds in these feedbacks remains unclear since the causality between clouds and these processes is complex. Here, we use NASA CERES satellite products and NCAR CESM model simulations to suggest that summertime low clouds have played an important role in driving sea ice melt by amplifying the adiabatic warming induced by a stronger anticyclonic circulation aloft. The upper-level high pressure regulates low clouds through stronger downward motion and increasing lower troposphere relative humidity. The increased low clouds favor more sea ice melt via emitting stronger longwave radiation. Then decreased surface albedo triggers a positive ice-albedo feedback, which further enhances sea ice melt. Considering the importance of summertime low clouds, accurate simulation of this process is a prerequisite for climate models to produce reliable future projections of Arctic sea ice.
more »
« less
This content will become publicly available on July 22, 2026
The influence of ocean waves on Antarctic sea-ice albedo and seasonal melting, and physical-biological feedbacks
Abstract. Identifying the processes that drive the rapid climatological retreat phase of Antarctica’s annual sea-ice cycle is crucial to understanding, modelling and attributing observed trends and recent high variability in sea-ice extent, and to projecting future sea-ice conditions and impacts accurately. To date, the rapid annual retreat of Antarctic sea ice each spring–summer has been largely attributed to lateral and basal melting of ice floes, enhanced by wave-induced breakup of large floes. Here, based on observations and modelling, we propose that waves play important additional roles in generating previously-neglected surface and interior melting, by removing snow from small floes, flooding them, and pulverising them into slush. Results here show a resultant estimated reduction in albedo by 0.38–0.54, that increases melting by 0.9–5.2 cm day-1 at 60–70o S compared to a snow-covered floe of first-year ice, and depending on surface type, wave-flooding coverage, latitude and ice density. Rapid proliferation of algae within and on the high-light and high-nutrient environment of the wave-modified ice reduces the albedo by a further 0.1 to increase the melt-rate enhancement to 1.1–6.1 cm day-1. Melting is further accelerated by a wave-induced ice–albedo feedback mechanism, similar to that associated with Arctic melt ponds but involving seawater rather than freshwater. This positive feedback is strengthened by ice-algal greening. Floe thinning and weakening by wave-melting initiate additional dynamic–thermodynamic feedbacks by increasing the likelihood of both wave-flooding and flexural breakup, leading to further floe melting. Wave melting and the associated physical–biological feedbacks will likely increase in importance in a predicted stormier and warmer Southern Ocean, and will also become more prevalent in a changing Arctic. There are implications for global weather and climate, the health of the ocean and its ecosystems, fisheries, ice-shelf stability and sea-level rise, atmospheric and oceanic biogeochemistry, and human activities.
more »
« less
- Award ID(s):
- 2143547
- PAR ID:
- 10638361
- Publisher / Repository:
- Copernicus
- Date Published:
- Format(s):
- Medium: X
- Institution:
- University of Washington
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that forms on sea ice during the summer is robust and stabilizing. In contrast, the albedo of ponded ice was observed to be highly variable at visible wavelengths. Notable temporal changes in albedo were documented during melt and freeze onset, formation and deepening of melt ponds, and during melt evolution of sediment-laden ice. While model simulations show considerable agreement with the observed seasonal albedo progression, disparities suggest the need to improve how the albedo of both ponded ice and thin, melting ice are simulated.more » « less
-
Abstract Snow is the most reflective natural surface on Earth. Since fresh snow on bare sea ice increases the surface albedo, the impact of summer snow accumulation can have a negative radiative forcing effect, which would inhibit sea ice surface melt and potentially slow sea‐ice loss. However, it is not well known how often, where, and when summer snowfall events occur on Arctic sea ice. In this study, we used in situ and model snow depth data paired with surface albedo and atmospheric conditions from satellite retrievals to characterize summer snow accumulation on Arctic sea ice from 2003 to 2017. We found that, across the Arctic, ∼2 snow accumulation events occurred on initially snow‐free conditions each year. The average snow depth and albedo increases were ∼2 cm and 0.08, respectively. 16.5% of the snow accumulation events were optically thick (>3 cm deep) and lasted 2.9 days longer than the average snow accumulation event (3.4 days). Based on a simple, multiple scattering radiative transfer model, we estimated a −0.086 ± 0.020 W m−2change in the annual average top‐of‐the‐atmosphere radiative forcing for summer snowfall events in 2003–2017. The following work provides new information on the frequency, distribution, and duration of observed snow accumulation events over Arctic sea ice in summer. Such results may be particularly useful in understanding the impacts of ephemeral summer weather on surface albedo and their propagating effects on the radiative forcing over Arctic sea ice, as well as assessing climate model simulations of summer atmosphere‐ice processes.more » « less
-
Sea ice growth and decay are critical processes in the Arctic climate system, but comprehensive observations are very sparse. We analyzed data from 23 sea ice mass balance buoys (IMBs) deployed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in 2019–2020 to investigate the seasonality and timing of sea ice thermodynamic mass balance in the Arctic Transpolar Drift. The data reveal four stages of the ice season: (I) onset of ice basal freezing, mid-October to November; (II) rapid ice growth, December–March; (III) slow ice growth, April–May; and (IV) melting, June onward. Ice basal growth ranged from 0.64 to 1.38 m at a rate of 0.004–0.006 m d–1, depending mainly on initial ice thickness. Compared to a buoy deployed close to the MOSAiC setup site in September 2012, total ice growth was about twice as high, due to the relatively thin initial ice thickness at the MOSAiC sites. Ice growth from the top, caused by surface flooding and subsequent snow-ice formation, was observed at two sites and likely linked to dynamic processes. Snow reached a maximum depth of 0.25 ± 0.08 m by May 2, 2020, and had melted completely by June 25, 2020. The relatively early onset of ice basal melt on June 7 (±10 d), 2019, can be partly attributed to the unusually rapid advection of the MOSAiC floes towards Fram Strait. The oceanic heat flux, calculated based on the heat balance at the ice bottom, was 2.8 ± 1.1 W m–2 in December–April, and increased gradually from May onward, reaching 10.0 ± 2.6 W m–2 by mid-June 2020. Subsequently, under-ice melt ponds formed at most sites in connection with increasing ice permeability. Our analysis provides crucial information on the Arctic sea ice mass balance for future studies related to MOSAiC and beyond.more » « less
-
Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.more » « less
An official website of the United States government
