skip to main content


Title: Large-Amplitude Internal Wave Transformation into Shallow Water
Abstract

Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth.

 
more » « less
Award ID(s):
1753317
NSF-PAR ID:
10375880
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
52
Issue:
10
ISSN:
0022-3670
Page Range / eLocation ID:
p. 2539-2554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shoaling internal solitary waves (ISWs) were observed at three mooring sites on the upper continental slope in the northern South China Sea over a period of 5–11 months at water depths of 600, 430, and 350 m. Their properties exhibit a fortnightly variation because of their origination from internal tides. ISW amplitudes, current speeds, and propagation speeds are greater and wave widths narrower in summer than in winter, consistent with the effect of increased stratification in summer, as confirmed by Dubreil‐Jacotin‐Long (DJL) solutions. As ISWs propagate up the slope, the differential response of current and propagation speeds to bottom topography provides an opportunity for convective breaking of ISWs. Convective breaking occurs mostly between 430 and 600‐m depths and exhibits a marginal convective instability status such that (a) the maximum current speed remains nearly equal to the propagation speed and (b) for large‐amplitude waves the current speed and propagation speed decrease at nearly the same rate between 600 and 430‐m depths. The marginal convective instability occurs because ISWs adjust gradually to the gently sloping bottom and preserve their structural integrity after the onset of breaking. Vertical velocity variances behind the leading ISWs, which serve as a surrogate for the number of trailing waves, increase when ISWs reach the convective breaking limit, suggesting that convective breaking may accelerate the fission process in leading ISWs or that convective breaking is accompanied by an enhanced nonlinear dispersion of waves trailing ISWs generated by internal tides.

     
    more » « less
  2. Abstract

    The influence of a deep (30 m), narrow (30 m) cross‐shore channel on the circulation and wave‐induced setup over a shallow (∼0.5 m) and wide (∼400 m) shore‐attached fringing reef is examined using field measurements collected at Ipan, Guam. Mean currents on the reef flat over a 7‐week study period during mid and high tides when the reef is submerged are directed toward the channel with the alongshore component of the current increasing with proximity to the channel. The cross‐shore component of the reef flat current is directed onshore at the sensors in the far‐field of the channel with a weak offshore flow at the current meter located closest to the channel (∼760 m to the north). Low‐frequency fluctuations of the alongshore reef flat current and offshore channel current are significantly correlated and with the incident significant wave height. Mean and low‐frequency fluctuating currents are forced by the spatially variable wave‐driven setup, modulated by tidal elevation, which creates a pressure gradient over the reef flat due to the channel where waves do not break. The dominant alongshore momentum balance on the reef flat is between the pressure gradient and bottom stress, with an inferred drag coefficient ofCD ∼ 0.01. A simple analytical model is presented that is consistent with the observations and delineates the near‐ and far‐field of the channel as a function of the aspect ratio of the reef. Observations from a longer deployment of channel currents are highly correlated with incident wave height in distinct tidal level bands.

     
    more » « less
  3. Abstract

    Cross‐shore velocities in the coastal ocean typically vary with depth. The direction and magnitude of transport experienced by meroplanktonic larvae will therefore be influenced by their vertical position. To quantify how swimming behavior and vertical position in internal waves influence larval cross‐shore transport in the shallow (~ 20 m), stratified coastal waters off Southern California, we deployed swarms of novel, subsurface larval mimics, the Mini‐Autonomous Underwater Explorers (M‐AUEs). The M‐AUEs were programmed to maintain a specified depth, and were deployed near a mooring. Transport of the M‐AUEs was predominantly onshore, with average velocities up to 14 cm s−1. To put the M‐AUE deployments into a broader context, we simulated > 500 individual high‐frequency internal waves observed at the mooring over a 14‐d deployment; in each internal wave, we released both depth‐keeping and passive virtual larvae every meter in the vertical. After the waves' passage, depth‐keeping virtual larvae were usually found closer to shore than passive larvae released at the same depth. Near the top of the water column (3–5‐m depth), ~ 20% of internal waves enhanced onshore transport of depth‐keeping virtual larvae by ≥ 50 m, whereas only 1% of waves gave similar enhancements to passive larvae. Our observations and simulations showed that depth‐keeping behavior in high‐frequency internal waves resulted in enhanced onshore transport at the top of the water column, and reduced offshore dispersal at the bottom, compared to being passive. Thus, even weak depth‐keeping may allow larvae to reach nearshore adult habitats more reliably than drifting passively.

     
    more » « less
  4. The formation of a recirculating subsurface core in an internal solitary wave (ISW) of depression, shoaling over realistic bathymetry, is explored through fully nonlinear and nonhydrostatic two-dimensional simulations. The computational approach is based on a high-resolution/accuracy deformed spectral multidomain penalty-method flow solver, which employs the recorded bathymetry, background current, and stratification profile in the South China Sea. The flow solver is initialized using a solution of the fully nonlinear Dubreil–Jacotin–Long equation. During shoaling, convective breaking precedes core formation as the rear steepens and the trough decelerates, allowing heavier fluid to plunge forward, forming a trapped core. This core-formation mechanism is attributed to a stretching of a near-surface background vorticity layer. Since the sign of the vorticity is opposite to that generated by the propagating wave, only subsurface recirculating cores can form. The onset of convective breaking is visualized, and the sensitivity of the core properties to changes in the initial wave, near-surface background shear, and bottom slope is quantified. The magnitude of the near-surface vorticity determines the size of the convective-breaking region, and the rapid increase of local bathymetric slope accelerates core formation. If the amplitude of the initial wave is increased, the subsequent convective-breaking region increases in size. The simulations are guided by field data and capture the development of the recirculating subsurface core. The analyzed parameter space constitutes a baseline for future three-dimensional simulations focused on characterizing the turbulent flow engulfed within the convectively unstable ISW.

     
    more » « less
  5. Abstract

    The meroplanktonic larvae of many invertebrate and vertebrate species rely on physical transport to move them across the shelf to their adult habitats. One potential mechanism for cross‐shore larval transport is Stokes drift in internal waves. Here, we develop theory to quantify the Stokes velocities of neutrally buoyant and depth‐keeping organisms in linear internal waves in shallow water. We apply the analyses to theoretical and measured internal wave fields, and compare results with a numerical model. Near the surface and bottom boundaries, both neutrally buoyant and depth‐keeping organisms were transported in the direction of the wave's phase propagation. However, neutrally buoyant organisms were transported in the opposite direction of the wave's phase at mid depths, while depth‐keeping organisms had zero net transport there. Weakly depth‐keeping organisms had Stokes drifts between the perfectly depth‐keeping and neutrally buoyant organisms. For reasonable wave amplitudes and phase speeds, organisms would experience horizontal Stokes speeds of several centimeters per second—or a few kilometers per day in a constant wave field. With onshore‐polarized internal waves, Stokes drift in internal waves presents a predictable mechanism for onshore transport of meroplanktonic larvae and other organisms near the surface, and offshore transport at mid depths.

     
    more » « less