skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Breaking Internal Waves on Sloping Topography: Connecting Parcel Displacements to Overturn Size, Interior-Boundary Exchanges, and Mixing
Internal waves impinging on sloping topography can generate mixing through the formation of near-bottom bores and overturns in what has been called the “internal swash” zone. Here, we investigate the mixing generated during these breaking events and the subsequent ventilation of the bottom boundary layer across a realistic nondimensional parameter space for the ocean using three-dimensional large-eddy simulations. Waves overturn and break at two points during a wave period: when the downslope velocity is strongest and during the rapid onset of a dense, upslope bore. From the first overturning bore to the expulsion of fluid into the interior, there is a strong dependence on the effective wave height, a length scale defined by the ratio of wave velocity over the background buoyancy frequency, an upper bound on the vertical parcel displacement an internal wave can cause. While a similar energetically motivated vertical length scale is often seen in the context of lee-wave generation over topography, the results discussed here suggest this readily measurable parameter can be used to estimate the size of near-boundary overturns, the strength of the ensuing turbulent mixing, and the vertical scale of the along-isopycnal intrusions of fluid ejected from the boundary layer. Examining a volume budget of the near-boundary region highlights spatial and temporal variability that must be considered when determining the water mass transformation during this process.  more » « less
Award ID(s):
2232441
PAR ID:
10618194
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Physical Oceanography
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
55
Issue:
6
ISSN:
0022-3670
Page Range / eLocation ID:
645 to 661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wind directly forces inertial oscillations in the mixed layer. Where these currents hit the coast, the no-normal-flow boundary condition leads to vertical velocities that pump both the base of the mixed layer and the free surface, producing offshore-propagating near-inertial internal and surface waves, respectively. The internal waves directly transport wind work downward into the ocean’s stratified interior, where it may provide mechanical mixing. The surface waves propagate offshore where they can scatter over rough topography in a process analogous to internal-tide generation. Here, we estimate mixed layer currents from observed winds using a damped slab model. Then, we estimate the pressure, velocity, and energy flux associated with coastally generated near-inertial waves at a vertical coastline. These results are extended to coasts with arbitrary across-shore topography and examined using numerical simulations. At the New Jersey shelfbreak, comparisons between the slab model, numerical simulations, and moored observations are ambiguous. Extrapolation of the theoretical results suggests that [Formula: see text](10%) of global wind work (i.e., 0.03 of 0.31 TW) is transferred to coastally generated barotropic near-inertial waves. 
    more » « less
  2. Abstract Acrucial region of the ocean surface boundary layer (OSBL) is the strongly-sheared and -stratified transition layer (TL) separating the mixed layer from the upper pycnocline, where a diverse range of waves and instabilities are possible. Previous work suggests that these different waves and instabilities will lead to different OSBL behaviours. Therefore, understanding which physical processes occur is key for modelling the TL. Here we present observations of the TL from a Lagrangian float deployed for 73 days near Ocean Weather Station Papa (50°N, 145°W) during Fall 2018. The float followed the vertical motion of the TL, continuously measuring profiles across it using an ADCP, temperature chain and salinity sensors. The temperature chain made depth/time images of TL structures with a resolution of 6cm and 3 seconds. These showed the frequent occurrence of very sharp interfaces, dominated by temperature jumps of O(1)°C over 6cm or less. Temperature inversions were typically small (≲ 10cm), frequent, and strongly-stratified; very few large overturns were observed. The corresponding velocity profiles varied over larger length scales than the temperature profiles. These structures are consistent with scouring behaviour rather than Kelvin-Helmholtz-type overturning. Their net effect, estimated via a Thorpe-scale analysis, suggests that these frequent small temperature inversions can account for the observed mixed layer deepening and entrainment flux. Corresponding estimates of dissipation, diffusivity, and heat fluxes also agree with previous TL studies, suggesting that the TL dynamics is dominated by these nearly continuous 10cm-scale mixing structures, rather than by less frequent larger overturns. 
    more » « less
  3. Abstract Studies of internal wave-driven mixing in the coastal ocean have been mainly focused on internal tides, while wind-driven near-inertial waves (NIWs) have received less attention in this regard. This study demonstrates a scenario of NIW-driven mixing over the Texas-Louisiana shelf. Supported by a high-resolution simulation over the shelf, the NIWs driven by land-sea breeze radiate downward at a sharp front and enhance the mixing in the bottom boundary layer where the NIWs are focused due to slantwise critical reflection. The criterion for slantwise critical reflection of NIWs is (where ω is the wave frequency, S bot is the bottom slope, and S p is the isopycnal slope) under the assumption that the mean flow is in a thermal wind balance and only varies in the slope-normal direction. The mechanism driving the enhanced mixing is explored in an idealized simulation. During slantwise critical reflection, NIWs are amplified with enhanced shear and periodically destratify a bottom boundary layer via differential buoyancy advection, leading to periodically enhanced mixing. Turbulent transport of tracers is also enhanced during slantwise critical reflection of NIWs, which has implications for bottom hypoxia over the Texas-Louisiana shelf. 
    more » « less
  4. Abstract Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth. 
    more » « less
  5. Abstract This study describes a specific type of critical layer for near-inertial waves (NIWs) that forms when isopycnals run parallel to sloping bathymetry. Upon entering this slantwise critical layer, the group velocity of the waves decreases to zero and the NIWs become trapped and amplified, which can enhance mixing. A realistic simulation of anticyclonic eddies on the Texas-Louisiana shelf reveals that such critical layers can form where the eddies impinge onto the sloping bottom. Velocity shear bands in the simulation indicate that windforced NIWs are radiated downward from the surface in the eddies, bend upward near the bottom, and enter critical layers over the continental shelf, resulting in inertially-modulated enhanced mixing. Idealized simulations designed to capture this flow reproduce the wave propagation and enhanced mixing. The link between the enhanced mixing and wave trapping in the slantwise critical layer is made using ray-tracing and an analysis of the waves’ energetics in the idealized simulations. An ensemble of simulations is performed spanning the relevant parameter space that demonstrates that the strength of the mixing is correlated with the degree to which NIWs are trapped in the critical layers. While the application here is for a shallow coastal setting, the mechanisms could be active in the open ocean as well where isopycnals align with bathymetry. 
    more » « less