skip to main content


Title: The Genomic Landscapes of Desert Birds Form over Multiple Time Scales
Abstract

Spatial models show that genetic differentiation between populations can be explained by factors ranging from geographic distance to environmental resistance across the landscape. However, genomes exhibit a landscape of differentiation, indicating that multiple processes may mediate divergence in different portions of the genome. We tested this idea by comparing alternative geographic predctors of differentiation in ten bird species that co-occur in Sonoran and Chihuahuan Deserts of North America. Using population-level genomic data, we described the genomic landscapes across species and modeled conditions that represented historical and contemporary mechanisms. The characteristics of genomic landscapes differed across species, influenced by varying levels of population structuring and admixture between deserts, and the best-fit models contrasted between the whole genome and partitions along the genome. Both historical and contemporary mechanisms were important in explaining genetic distance, but particularly past and current environments, suggesting that genomic evolution was modulated by climate and habitat There were also different best-ftit models across genomic partitions of the data, indicating that these regions capture different evolutionary histories. These results show that the genomic landscape of differentiation can be associated with alternative geographic factors operating on different portions of the genome, which reflect how heterogeneous patterns of genetic differentiation can evolve across species and genomes.

 
more » « less
NSF-PAR ID:
10375911
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
39
Issue:
10
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial models show that genetic differentiation between populations can be explained by factors ranging from geographic distance to environmental resistance across the landscape. However, genomes exhibit a landscape of differentiation, indicating that multiple processes may mediate divergence in different portions of the genome. We tested this idea by comparing alternative geographic predctors of differentiation in ten bird species that co-occur in Sonoran and Chihuahuan Deserts of North America. Using population-level genomic data, we described the genomic landscapes across species and modeled conditions that represented historical and contemporary mechanisms. The characteristics of genomic landscapes differed across species, influenced by varying levels of population structuring and admixture between deserts, and the best-fit models contrasted between the whole genome and partitions along the genome. Both historical and contemporary mechanisms were important in explaining genetic distance, but particularly past and current environments, suggesting that genomic evolution was modulated by climate and habitat There were also different best-fit models across genomic partitions of the data, indicating that these regions capture different evolutionary histories. These results show that the genomic landscape of differentiation can be associated with alternative geographic factors operating on different portions of the genome, which reflect how heterogeneous patterns of genetic differentiation can evolve across species and genomes. 
    more » « less
  2. INTRODUCTION The Anthropocene is marked by an accelerated loss of biodiversity, widespread population declines, and a global conservation crisis. Given limited resources for conservation intervention, an approach is needed to identify threatened species from among the thousands lacking adequate information for status assessments. Such prioritization for intervention could come from genome sequence data, as genomes contain information about demography, diversity, fitness, and adaptive potential. However, the relevance of genomic data for identifying at-risk species is uncertain, in part because genetic variation may reflect past events and life histories better than contemporary conservation status. RATIONALE The Zoonomia multispecies alignment presents an opportunity to systematically compare neutral and functional genomic diversity and their relationships to contemporary extinction risk across a large sample of diverse mammalian taxa. We surveyed 240 species spanning from the “Least Concern” to “Critically Endangered” categories, as published in the International Union for Conservation of Nature’s Red List of Threatened Species. Using a single genome for each species, we estimated historical effective population sizes ( N e ) and distributions of genome-wide heterozygosity. To estimate genetic load, we identified substitutions relative to reconstructed ancestral sequences, assuming that mutations at evolutionarily conserved sites and in protein-coding sequences, especially in genes essential for viability in mice, are predominantly deleterious. We examined relationships between the conservation status of species and metrics of heterozygosity, demography, and genetic load and used these data to train and test models to distinguish threatened from nonthreatened species. RESULTS Species with smaller historical N e are more likely to be categorized as at risk of extinction, suggesting that demography, even from periods more than 10,000 years in the past, may be informative of contemporary resilience. Species with smaller historical N e also carry proportionally higher burdens of weakly and moderately deleterious alleles, consistent with theoretical expectations of the long-term accumulation and fixation of genetic load under strong genetic drift. We found weak support for a causative link between fixed drift load and extinction risk; however, other types of genetic load not captured in our data, such as rare, highly deleterious alleles, may also play a role. Although ecological (e.g., physiological, life-history, and behavioral) variables were the best predictors of extinction risk, genomic variables nonrandomly distinguished threatened from nonthreatened species in regression and machine learning models. These results suggest that information encoded within even a single genome can provide a risk assessment in the absence of adequate ecological or population census data. CONCLUSION Our analysis highlights the potential for genomic data to rapidly and inexpensively gauge extinction risk by leveraging relationships between contemporary conservation status and genetic variation shaped by the long-term demographic history of species. As more resequencing data and additional reference genomes become available, estimates of genetic load, estimates of recent demographic history, and accuracy of predictive models will improve. We therefore echo calls for including genomic information in assessments of the conservation status of species. Genomic information can help predict extinction risk in diverse mammalian species. Across 240 mammals, species with smaller historical N e had lower genetic diversity, higher genetic load, and were more likely to be threatened with extinction. Genomic data were used to train models that predict whether a species is threatened, which can be valuable for assessing extinction risk in species lacking ecological or census data. [Animal silhouettes are from PhyloPic] 
    more » « less
  3. Hancock, Angela (Ed.)
    Abstract

    Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation.

     
    more » « less
  4. Abstract

    The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of interspecies divergence, the accumulation of intra‐species (i.e., population level) genetic divergence across the mountain‐valley landscape in this region has received less attention. We used genome‐wide restriction site‐associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations ofThitarodes shambalaensis(Lepidoptera: Hepialidae), the host moth of parasiticOphiocordyceps sinensis(Hypocreales: Ophiocordycipitaceae) or caterpillar fungus” endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations ofT.shambalaensis. We found that moth populations separated by less than 10 km exhibited valley‐based population genetic clustering and isolation‐by‐distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML, 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 m apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGMLglaciers. These results reveal the fine‐scale, long‐term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.

     
    more » « less
  5. Abstract Background Disentangling the drivers of genetic differentiation is one of the cornerstones in evolution. This is because genetic diversity, and the way in which it is partitioned within and among populations across space, is an important asset for the ability of populations to adapt and persist in changing environments. We tested three major hypotheses accounting for genetic differentiation—isolation-by-distance (IBD), isolation-by-environment (IBE) and isolation-by-resistance (IBR)—in the annual plant Arabidopsis thaliana across the Iberian Peninsula, the region with the largest genomic diversity. To that end, we sampled, genotyped with genome-wide SNPs, and analyzed 1772 individuals from 278 populations distributed across the Iberian Peninsula. Results IBD, and to a lesser extent IBE, were the most important drivers of genetic differentiation in A. thaliana . In other words, dispersal limitation, genetic drift, and to a lesser extent local adaptation to environmental gradients, accounted for the within- and among-population distribution of genetic diversity. Analyses applied to the four Iberian genetic clusters, which represent the joint outcome of the long demographic and adaptive history of the species in the region, showed similar results except for one cluster, in which IBR (a function of landscape heterogeneity) was the most important driver of genetic differentiation. Using spatial hierarchical Bayesian models, we found that precipitation seasonality and topsoil pH chiefly accounted for the geographic distribution of genetic diversity in Iberian A. thaliana . Conclusions Overall, the interplay between the influence of precipitation seasonality on genetic diversity and the effect of restricted dispersal and genetic drift on genetic differentiation emerges as the major forces underlying the evolutionary trajectory of Iberian A. thaliana . 
    more » « less