skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genetic structure and landscape effects on gene flow in the Neotropical lizard Norops brasiliensis (Squamata: Dactyloidae)
Abstract One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations) have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the genetic structure and differentiation in the lizard speciesNorops brasiliensis(Squamata: Dactyloidae). To achieve our goal, we used a genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network; CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models. We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The results of the CNN showed that geographic distance is the sole predictor of genetic variation inN. brasiliensis, and that slope, rivers, and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies, representing promising avenues for future research with increasingly accessible genomic datasets.  more » « less
Award ID(s):
1831319
PAR ID:
10498986
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Heredity
Volume:
132
Issue:
6
ISSN:
0018-067X
Format(s):
Medium: X Size: p. 284-295
Size(s):
p. 284-295
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Genomic‐scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a “worst‐case” scenario for species delimitation within vertebrates: theCtenotus inornatusspecies group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation‐by‐distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that “taxonomic disaster zones” like theC. inornatusspecies group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization. 
    more » « less
  2. Munderloh, Ulrike Gertrud (Ed.)
    Microorganisms, including rotifers, are thought to be capable of long distance dispersal. Therefore, they should show little population genetic structure due to high gene flow. Nevertheless, substantial genetic structure has been reported among populations of many taxa. In rotifers, genetic studies have focused on planktonic taxa leaving sessile groups largely unexplored. Here, we used COI gene and ITS region sequences to study genetic structure and delimit cryptic species in two sessile species (Limnias melicerta [32 populations]; L. ceratophylli [21 populations]). Among populations, ITS region sequences were less variable as compared to those of the COI gene (ITS; L. melicerta: 0–3.1% and L. ceratophylli: 0–4.4%; COI; L. melicerta: 0–22.7% and L. ceratophylli: 0–21.7%). Moreover, L. melicerta and L. ceratophylli were not resolved in phylogenetic analyses based on ITS sequences. Thus, we used COI sequences for species delimitation. Bayesian Species Delimitation detected nine putative cryptic species within L. melicerta and four putative cryptic species for L. ceratophylli. The genetic distance in the COI gene was 0–15.4% within cryptic species of L. melicerta and 0.5–0.6% within cryptic species of L. ceratophylli. Among cryptic species, COI genetic distance ranged 8.1–21.9% for L. melicerta and 15.1–21.2% for L. ceratophylli. The correlation between geographic and genetic distance was weak or lacking; thus geographic isolation cannot be considered a strong driver of genetic variation. In addition, geometric morphometric analyses of trophi did not show significant variation among cryptic species. In this study we used a conservative approach for species delimitation, yet we were able to show that species diversity in these sessile rotifers is underestimated. 
    more » « less
  3. Orti, Guillermo (Ed.)
    While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important. 
    more » « less
  4. Genetic variation among populations is reflected in biogeographic patterns for many species, but general rules of spatial genetic variation have not been established. In this paper, we establish a theoretical framework based on projecting environmental Grinellian niches back through time to relate the present geographic distribution of population genetic structure to a given species' historical evolutionary context. Thanks to advances in next‐generation sequencing technologies, as well as more accurate climate models and the amassing of information stored in biological collections, it is possible to implement this theoretical framework directly. We develop a case study of the tassel‐eared squirrelSciurus abertito jointly analyze spatial, environmental, and genetic data to predict the historical endemic area of this species. Our results reveal that in cases of genetic isolation by geographic distance, the prevalence of environmental suitability over time corresponds to the genetic fixation index (Fst) of populations with respect to a source population. Populations closer to the historical endemic area show higher genetic diversity and a lowerFstvalue. This empirical example relates back to the theoretical framework, allowing two further advances: 1) a layer of biogeographic explanation for the results obtained from population genomic methods; and 2) predictive maps of this genetic structure to support biodiversity conservation efforts. Overall, this work advances a perspective that integrates population genetics with historical patterns of species distribution. The limitations posed in the theoretical framework should be considered before implementing the suitability prevalence area (SPA) in a general way over different taxa. Otherwise, the predictability of the genetic diversity of populations as a product of environmental stability over time may not be adequate. 
    more » « less
  5. Abstract Population demographic changes, alongside landscape, geographic and climate heterogeneity, can influence the timing, stability and extent of introgression where species hybridise. Thus, quantifying interactions across diverged lineages, and the relative contributions of interspecific genetic exchange and selection to divergence at the genome‐wide level is needed to better understand the drivers of hybrid zone formation and maintenance. We used seven latitudinally arrayed transects to quantify the contributions of climate, geography and landscape features to broad patterns of genetic structure across the hybrid zone ofPopulus trichocarpaandP. balsamiferaand evaluated the demographic context of hybridisation over time. We found genetic structure differed among the seven transects. While ancestry was structured by climate, landscape features influenced gene flow dynamics. Demographic models indicated a secondary contact event may have influenced contemporary hybrid zone formation with the origin of a putative hybrid lineage that inhabits regions with higher aridity than either of the ancestral groups. Phylogenetic relationships based on chloroplast genomes support the origin of this hybrid lineage inferred from demographic models based on the nuclear data. Our results point towards the importance of climate and landscape patterns in structuring the contact zones betweenP. trichocarpaandP. balsamiferaand emphasise the value whole genome sequencing can have to advancing our understanding of how neutral processes influence divergence across space and time. 
    more » « less