Adaptive quantum circuits—where a quantum many-body state is controlled using measurements and conditional unitary operations—are a powerful paradigm for state preparation and quantum error-correction tasks. They can support two types of nonequilibrium quantum phase transitions: measurement-induced transitions between volume- and area-law-entangled steady states and control-induced transitions where the system falls into an absorbing state or, more generally, an orbit visiting several absorbing states. Within this context, nonlocal conditional operations can alter the critical properties of the two transitions and the topology of the phase diagram. Here, we consider the scenario where the measurements are , in order to engineer efficient control onto dynamical trajectories. Motivated by Rydberg-atom arrays, we consider a locally constrained model with global sublattice magnetization measurements and local correction operations to steer the system’s dynamics onto a many-body orbit with finite recurrence time. The model has a well-defined classical limit, which we leverage to aid our analysis of the control transition. As a function of the density of local correction operations, we find control and entanglement transitions with continuously varying critical exponents. For sufficiently high densities of local correction operations, we find that both transitions acquire a dynamical critical exponent , reminiscent of criticality in long-range power-law interacting systems. At low correction densities, we find that the criticality reverts to a short-range nature with . In the long-range regime, the control and entanglement transitions are indistinguishable to within the resolution of our finite-size numerics, while in the short-range regime we find evidence that the transitions become distinct. We conjecture that the effective long-range criticality mediated by collective measurements is essential in driving the two transitions together. Published by the American Physical Society2025
more »
« less
Dissipative Floquet Dynamics: from Steady State to Measurement Induced Criticality in Trapped-ion Chains
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions, arising from the competition between unitary evolution and measurements. Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions at the level of quantum trajectories are two primary examples of such transitions. Investigating a many-body spin system subject to periodic resetting measurements, we argue that many-body dissipative Floquet dynamics provides a natural framework to analyze both types of transitions. We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems as a function of measurement probabilities. A measurement induced transition of the entanglement entropy between volume law scaling and sub-volume law scaling is also present, and is distinct from the ordering transition. The two phases correspond to an error-correcting and a quantum-Zeno regimes, respectively. The ferromagnetic phase is lost for short range interactions, while the volume law phase of the entanglement is enhanced. An analysis of multifractal properties of wave function in Hilbert space provides a common perspective on both types of transitions in the system. Our findings are immediately relevant to trapped ion experiments, for which we detail a blueprint proposal based on currently available platforms.
more »
« less
- Award ID(s):
- 2144910
- PAR ID:
- 10376267
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 6
- ISSN:
- 2521-327X
- Page Range / eLocation ID:
- 638
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.more » « less
-
The intensely studied measurement-induced entanglement phase transition has become a hallmark of nonunitary quantum many-body dynamics. Usually, such a transition only appears at the level of each individual quantum trajectory, and is absent for the density matrix averaged over measurement outcomes. In this work, we introduce a class of adaptive random circuit models with feedback that exhibit transitions in both settings. After each measurement, a unitary operation is either applied or not depending on the measurement outcome, which steers the averaged density matrix towards a unique state above a certain measurement threshold. Interestingly, the transition for the density matrix and the entanglement transition in the individual quantum trajectory in general happen at different critical measurement rates. We demonstrate that the former transition belongs to the parity-conserving universality class by explicitly mapping to a classical branching-annihilating random-walk process.more » « less
-
In quantum many-body spin systems, the interplay between the entangling effect of multiqubit Pauli measurements and the disentangling effect of single-qubit Pauli measurements may give rise to two competing effects. By introducing a randomized measurement pattern with such bases, a phase transition can be induced by altering the ratio between them. In this work, we numerically investigate a measurement-based model associated with the Fradkin-Shenker Hamiltonian that encompasses the deconfining, confining, and Higgs phases. We determine the phase diagram in our measurement-only model by employing entanglement measures. For the bulk topological order, we use the topological entanglement entropy. We also use the mutual information between separated boundary regions to diagnose the boundary phase transition associated with the Higgs or the bulk symmetry-protected topological (SPT) phase. We observe the structural similarity between our phase diagram and the one in the standard quantum Hamiltonian formulation of the Fradkin-Shenker model with the open rough boundary. First, a deconfining phase is detected by nonzero and constant topological entanglement entropy. Second, we find a (boundary) phase transition curve separating the Higgs=SPT phase from the rest. In certain limits, the topological phase transitions reside at the critical point of the formation of giant homological cycles in the bulk three-dimensional (3D) space-time lattice, as well as the bond percolation threshold of the boundary 2D space-time lattice when it is effectively decoupled from the bulk. Additionally, there are analogous mixed-phase properties at a certain region of the phase diagram, emerging from how we terminate the measurement-based procedure. Our findings pave an alternative pathway to study the physics of Higgs=SPT phases on quantum devices in the near future.more » « less
-
Abstract Open quantum systems have been shown to host a plethora of exotic dynamical phases. Measurement-induced entanglement phase transitions in monitored quantum systems are a striking example of this phenomena. However, naive realizations of such phase transitions requires an exponential number of repetitions of the experiment which is practically unfeasible on large systems. Recently, it has been proposed that these phase transitions can be probed locally via entangling reference qubits and studying their purification dynamics. In this work, we leverage modern machine learning tools to devise a neural network decoder to determine the state of the reference qubits conditioned on the measurement outcomes. We show that the entanglement phase transition manifests itself as a stark change in the learnability of the decoder function. We study the complexity and scalability of this approach in both Clifford and Haar random circuits and discuss how it can be utilized to detect entanglement phase transitions in generic experiments.more » « less
An official website of the United States government

