skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critical phase and spin sharpening in SU(2)-symmetric monitored quantum circuits
Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.  more » « less
Award ID(s):
1653271 2236517 2120757
PAR ID:
10487957
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
108
Issue:
5
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the entanglement dynamics of quantum automaton (QA) circuits in the presence of U(1) symmetry. We find that the second Rényi entropy grows diffusively with a logarithmic correction as t ln t , saturating the bound established by Huang \cite{Huang_2020}. Thanks to the special feature of QA circuits, we understand the entanglement dynamics in terms of a classical bit string model. Specifically, we argue that the diffusive dynamics stems from the rare slow modes containing extensively long domains of spin 0s or 1s. Additionally, we investigate the entanglement dynamics of monitored QA circuits by introducing a composite measurement that preserves both the U(1) symmetry and properties of QA circuits. We find that as the measurement rate increases, there is a transition from a volume-law phase where the second Rényi entropy persists the diffusive growth (up to a logarithmic correction) to a critical phase where it grows logarithmically in time. This interesting phenomenon distinguishes QA circuits from non-automaton circuits such as U(1)-symmetric Haar random circuits, where a volume-law to an area-law phase transition exists, and any non-zero rate of projective measurements in the volume-law phase leads to a ballistic growth of the Rényi entropy. 
    more » « less
  2. Abstract Open quantum systems have been shown to host a plethora of exotic dynamical phases. Measurement-induced entanglement phase transitions in monitored quantum systems are a striking example of this phenomena. However, naive realizations of such phase transitions requires an exponential number of repetitions of the experiment which is practically unfeasible on large systems. Recently, it has been proposed that these phase transitions can be probed locally via entangling reference qubits and studying their purification dynamics. In this work, we leverage modern machine learning tools to devise a neural network decoder to determine the state of the reference qubits conditioned on the measurement outcomes. We show that the entanglement phase transition manifests itself as a stark change in the learnability of the decoder function. We study the complexity and scalability of this approach in both Clifford and Haar random circuits and discuss how it can be utilized to detect entanglement phase transitions in generic experiments. 
    more » « less
  3. Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions, arising from the competition between unitary evolution and measurements. Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions at the level of quantum trajectories are two primary examples of such transitions. Investigating a many-body spin system subject to periodic resetting measurements, we argue that many-body dissipative Floquet dynamics provides a natural framework to analyze both types of transitions. We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems as a function of measurement probabilities. A measurement induced transition of the entanglement entropy between volume law scaling and sub-volume law scaling is also present, and is distinct from the ordering transition. The two phases correspond to an error-correcting and a quantum-Zeno regimes, respectively. The ferromagnetic phase is lost for short range interactions, while the volume law phase of the entanglement is enhanced. An analysis of multifractal properties of wave function in Hilbert space provides a common perspective on both types of transitions in the system. Our findings are immediately relevant to trapped ion experiments, for which we detail a blueprint proposal based on currently available platforms. 
    more » « less
  4. In quantum many-body spin systems, the interplay between the entangling effect of multiqubit Pauli measurements and the disentangling effect of single-qubit Pauli measurements may give rise to two competing effects. By introducing a randomized measurement pattern with such bases, a phase transition can be induced by altering the ratio between them. In this work, we numerically investigate a measurement-based model associated with the Fradkin-Shenker Hamiltonian that encompasses the deconfining, confining, and Higgs phases. We determine the phase diagram in our measurement-only model by employing entanglement measures. For the bulk topological order, we use the topological entanglement entropy. We also use the mutual information between separated boundary regions to diagnose the boundary phase transition associated with the Higgs or the bulk symmetry-protected topological (SPT) phase. We observe the structural similarity between our phase diagram and the one in the standard quantum Hamiltonian formulation of the Fradkin-Shenker model with the open rough boundary. First, a deconfining phase is detected by nonzero and constant topological entanglement entropy. Second, we find a (boundary) phase transition curve separating the Higgs=SPT phase from the rest. In certain limits, the topological phase transitions reside at the critical point of the formation of giant homological cycles in the bulk three-dimensional (3D) space-time lattice, as well as the bond percolation threshold of the boundary 2D space-time lattice when it is effectively decoupled from the bulk. Additionally, there are analogous mixed-phase properties at a certain region of the phase diagram, emerging from how we terminate the measurement-based procedure. Our findings pave an alternative pathway to study the physics of Higgs=SPT phases on quantum devices in the near future. 
    more » « less
  5. Abstract We present a class of two-dimensional randomized plaquette models, where the multi-spin interaction term, referred to as the plaquette term, is replaced by a single-site spin term with a probability of 1 p . By varyingp, we observe a ground state phase transition, or equivalently, a phase transition of the symmetry operator. We find that as we varyp, the symmetry operator changes from being extensive to being localized in space. These models can be equivalently understood as 1+1D randomized cellular automaton dynamics, allowing the 2D transition to be interpreted as a 1+1D dynamical absorbing phase transition. In this paper, our primary focus is on the plaquette term with three or five-body interactions, where we explore the universality classes of the transitions. Specifically, for the model with five-body interaction, we demonstrate that it belongs to the same universality class as the measurement-induced entanglement phase transition observed in 1+1D Clifford dynamics, as well as the boundary entanglement transition of the 2D cluster state induced by random bulk Pauli measurements. This work establishes a connection between transitions in classical spin models, cellular automata, and hybrid random circuits. 
    more » « less