skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Influence of fishes on macroinvertebrate communities and insect emergence production in intermittent stream refuges
Abstract

Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.

Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in‐stream predators such as fishes.

We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.

Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.

There was an increase over time in algal biomass (chlorophyll‐a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.

Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.

 
more » « less
NSF-PAR ID:
10376385
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Freshwater Biology
Volume:
65
Issue:
8
ISSN:
0046-5070
Page Range / eLocation ID:
p. 1412-1428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited.

    The top aquatic predator in southern California streams is nativeOncorhynchus mykiss, the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances.

    Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools.

    Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa.

    Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance.

    These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change.

     
    more » « less
  2. Abstract

    The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.

    We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.

    We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.

    Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.

    Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering.

     
    more » « less
  3. Abstract

    Wetlands are especially vulnerable to invasive plants because seasonal movements of sediments, water, nutrients, and debris from adjacent terrestrial habitats create ecological conditions suitable for invasion.Lonicera maackiiis a relatively abundant and broadly distributed invasive shrub in the eastern U.S.A., yet few studies have simultaneously tested for effects of its leaf litter on multiple trophic levels within wetland food webs.

    Hatching success, hatchling survival, and hatchling size of tadpoles (Acris crepitans) were assessed using a laboratory mesocosm experiment with no‐leaf, native‐leaf, andL. maackii‐leaf treatments. In the field, short‐term (c. 3 week) and long‐term (c. 2 years) mesocosm experiments assessed the initial and persistent impacts, respectively, ofL. maackiion measures of primary productivity, invertebrate abundance and community structure, and oviposition preference and larval survival of Cope's gray treefrog (Hyla chrysoscelis).

    Exposure of eggs toL. maackiileaves reduced body size at hatching and larval survival of newly hatchedA. crepitans. In short‐term experiments,Lmaackiileaves reduced dissolved oxygen levels, filamentous algal biomass, and macroinvertebrate abundance, and altered macroinvertebrate community structure. In long‐term experiments, duckweed cover was 15× times greater in mesocosms withL. maackiileaf additions. Oviposition by a local population ofH. chrysosceliswas 10× lower in both short‐ and long‐term mesocosms withL. maackiipresent.

    Although ecological impacts ofL. maackiihave been reported for terrestrial systems, our study is the first to demonstrate the simultaneous effects of its leaves on multiple trophic levels within replicated experimental wetlands. The relatively rapid decomposition ofL. maackiileaves, and associated pulse of phenolic compounds, is the most likely proximate mechanism of the bottom‐up effects we observed. The mechanisms, timing, and significance of effects is predicted to vary among natural wetlands.

    Our study demonstrates multiple ecological impacts of a terrestrial invasive shrub within experimental wetlands. Detailed studies on the specific mechanisms, and their spatial and temporal variability in natural systems, will elucidate management strategies and improve the efficiency of wetland conservation efforts.

     
    more » « less
  4. Abstract

    Positive correlation between trout abundance and dissolved metal concentrations along the Upper Clark Fork River (UCFR; Montana, USA) have forced restoration practitioners to seek underlying causes of reduced fish density beyond heavy metal contamination. Throughout the river, nutrient enrichment and summer algal blooms may be hindering full recovery of trout populations. In this study, we evaluated the community structure and metal body burdens of benthic invertebrates and characterized existing trophic linkages between brown trout and dominant invertebrate taxa before and during summer algal blooms in a downstream reach of the UCFR where fish densities are low (20–30 trout/km), and where metal contamination is relevant but minimal compared with upstream. In spring, estimated invertebrate abundance was 1,727 ± 217 individuals/m2and dominated by Ephemerellidae and Baetidae families. During summer algal bloom, invertebrate abundance increased 15‐fold (20,580 ± 3,510 individuals/m2) mostly due to greater abundance of Chironomidae, Hydropsychidae, and Simulidae. Copper body burdens (130 ± 42 ppm) were higher than any other heavy metal regardless of season, but detectable concentrations of arsenic, cadmium, and lead were also found. A Bayesian mixing model combining metal burdens and stable isotopes showed that in the spring, trout of average size (355 ± 65 g) relied mostly on epibenthic taxa (Ephemerellidae and Hydropsychidae), contrasting with small (<100 g) and large (>400 g) trout relying heavily on Baetidae, a major component of invertebrate drift. Foraging segregation related to trout size did not occur during summer algal blooms, which may reflect increasing influence of benthic algal proliferation or indicate the indiscriminate use of pool habitats as thermal refugia over summer conditions by trout of different ages.

     
    more » « less
  5. Abstract

    Animals exert both direct and indirect controls over elemental cycles, linking primary producer‐based (green) and decomposer‐based (brown) food webs through top‐down trophic interactions and bottom‐up element regeneration. Where animals are aggregated at high biomass, they create hotspots of elemental cycling. The relative importance of animal control on elemental cycling depends on animal biomass, species functional traits (i.e. feeding mode and stoichiometry), and their overlap.

    We evaluated how animal community complexity affects the mechanisms regulating energy flow to the brown food web. We conducted a mesocosm experiment where we varied the biomass and overlap of animals with different life history and stoichiometric traits (stream fish and mussels) and measured how this influenced the quantity and fraction of labile carbon available to microbes. We used linear models and structural equation modelling to evaluate direct (excretion) and indirect (herbivory, nutrient availability, and nutrient stoichiometry) effects of animals on bioavailable dissolved organic carbon (BDOC) concentration.

    In experimental stream mesocosms, we found support for both direct (DOC excretion) and indirect (grazing) animal influences on BDOC concentration. Although we found that snail, fish, and mussel biomass increased nutrient concentrations, neither nutrient concentration nor stoichiometry had a significant effect on BDOC concentration. This has been due to the high background nutrient concentration context of our stream mesocosm water. Snails, probably due to their high biomass and small body size, exerted a significant positive direct control on BDOC concentration. Fish and mussels exerted a significant negative indirect control on BDOC via their effects (grazing and bioturbation) on algal biomass.

    Our results imply that primary consumers with different feeding strategies provide a key mechanism regulating the flow of DOC into the brown food web through direct (excretion) and indirect (grazing) controls on primary producers. This highlights that animals can provide important controls on the production of bioavailable organic energy supporting microbes in aquatic ecosystems, but the importance of these controls depends on the nutrient context and the distribution of primary producer and animal biomasses.

     
    more » « less