Abstract Papertronics introduce a sustainable, cost‐effective revolution in electronics, especially for the Internet of Things. This research overcomes the traditional challenges of paper's porosity, which has impeded electronic component fabrication and performance. A novel approach that harnesses paper's natural capillary action, combined with hydrophobic wax patterning, to achieve precise vertical integration of electronic components is introduced. This method marks a significant departure from conventional surface deposition techniques. This study demonstrates the successful creation of tunable resistors, capacitors, and field‐effect transistors, embedded within a single sheet of paper. Contrary to previous assumptions that impeded the use of paper, its rough and porous texture as a strategic advantage, facilitating the precise fabrication of intricate electronic components is leveraged. Machine learning algorithms play an important role in predicting and enhancing the performance of these papertronic components. This innovation facilitates the development of compact printed circuit boards with increased circuit density, enabling the integration of diverse analog and digital circuits in either single or multi‐layer paper formats. The resulting papertronic systems exceed performance benchmarks, offering eco‐friendly disposal through biodegradability or incineration. These breakthroughs establish papertronics as a feasible, eco‐friendly alternative in the electronics industry, permitting widespread adoption and continuous innovation in sustainable electronic solutions.
more »
« less
Papertronics: Fully paper-integrated resistor, capacitor, and transistor circuits
This work presents fabrication techniques for achieving individual electronic components both on the surface and within the fibers of a paper substrate, attaining full integration of paper and functional electronics materials. A process of hydrophobic wax patterning coupled with conductive and semiconductive poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid) (PEDOT: PSS)-based ink injection and screen-printing has allowed for the implementation of all-paper-based, tunable resistors, capacitors, and transistors. The characteristics of the paper resistors can be adjusted as desired through finetuning of the PEDOT: PSS- based ink recipe, and the components can be combined in various arrangements to attain paper-based printed circuit boards (PCBs) for a wide range of practical applications. As a first step towards multiple component integration, a simple example circuit design is demonstrated that incorporates the three different components. Furthermore, through the strategic organization of the resistors, transistors, and capacitors and stacking of paper layers, more complex and diverse paper PCBs can be attained while minimizing the perceived surface area of the circuitry, allowing for a compact, pliable, and highly customizable means of fabricating paper-based electronic systems.
more »
« less
- PAR ID:
- 10376401
- Date Published:
- Journal Name:
- Technical digest SolidState Sensor Actuator and Microsystems Workshop
- ISSN:
- 1539-204X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Resistors are basic yet essential circuit components that must be fabricated with high precision at low cost if they are to be viable for flexible electronic applications. Inkjet printing is one of many additive fabrication techniques utilized to realize this goal. In this work, a process termed self-aligned capillarity-assisted lithography for electronics (SCALE) was used to fabricate inkjet-printed resistors on flexible substrates. Capillary channels and reservoirs imprinted onto flexible substrates enabled precise control of resistor geometry and straightforward alignment of materials. More than 300 devices were fabricated using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the resistive material and silver as the electrode material. By varying PEDOT:PSS ink formulation and resistor geometry, resistances spanning from 170 Ω to 3.8 MΩ were achieved. Over 98% of devices were functional and the relative standard deviation in resistance ranged from 3% to 18% depending on resistor length and ink composition. The resistors showed no significant change in resistance after 10 000 cycles of bend testing at 1.6% surface tensile strain. In summary, this work demonstrated a fully roll-to-roll compatible process for inkjet printing resistors with superior properties.more » « less
-
Boland, Thomas (Ed.)The conventional real-time screening in organs-on-chips is limited to optical tracking of pre-tagged cells and biological agents. This work introduces an efficient biofabrication protocol to integrate tunable hydrogel electrodes into 3D bioprinted-on-chips. We established our method of fabricating cell-laden hydrogel-based microfluidic chips through digital light processing-based 3D bioprinting. Our conductive ink includes poly-(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT: PSS) microparticles doped in polyethylene glycol diacrylate (PEGDA). We optimized the manufacturing process of PEDOT: PSS microparticles characterized our conductive ink for different 3D bioprinting parameters, geometries, and materials conditions. While the literature is limited to 0.5% w/v for PEDOT: PSS microparticle concentration, we increased their concentration to 5% w/v with superior biological responses. We measured the conductivity in the 3–15 m/m for a range of 0.5%–5% w/v microparticles, and we showed the effectiveness of 3D-printed electrodes for predicting cell responses when encapsulated in gelatin-methacryloyl (GelMA). Interestingly, a higher cellular activity was observed in the case of 5% w/v microparticles compared to 0.5% w/v microparticles. Electrochemical impedance spectroscopy measurements indicated significant differences in cell densities and spheroid sizes embedded in GelMA microtissues.more » « less
-
The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces.more » « less
-
Abstract Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.more » « less
An official website of the United States government

