skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Certain Geometric Operators Between Sobolev Spaces of Sections of Tensor Bundles on Compact Manifolds Equipped with Rough Metrics
The study of Einstein constraint equations in general relativity naturally leads to considering Riemannian manifolds equipped with nonsmooth metrics. There are several important differential operators on Riemannian manifolds whose definitions depend on the metric: gradient, divergence, Laplacian, covariant derivative, conformal Killing operator, and vector Laplacian, among others. In this article, we study the approximation of such operators, defined using a rough metric, by the corresponding operators defined using a smooth metric. This paves the road to understanding to what extent the nice properties such operators possess, when defined with smooth metric, will transfer over to the corresponding operators defined using a nonsmooth metric. These properties are often assumed to hold when working with rough metrics, but to date the supporting literature is slim.  more » « less
Award ID(s):
2012857
PAR ID:
10376439
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Contemporary Mathematics
ISSN:
2705-1064
Page Range / eLocation ID:
89 to 140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mahoney, Michael (Ed.)
    In this paper, we study the Radial Basis Function (RBF) approximation to differential operators on smooth tensor fields defined on closed Riemannian submanifolds of Euclidean space, identified by randomly sampled point cloud data. The formulation in this paper leverages a fundamental fact that the covariant derivative on a submanifold is the projection of the directional derivative in the ambient Euclidean space onto the tangent space of the submanifold. To differentiate a test function (or vector field) on the submanifold with respect to the Euclidean metric, the RBF interpolation is applied to extend the function (or vector field) in the ambient Euclidean space. When the manifolds are unknown, we develop an improved second-order local SVD technique for estimating local tangent spaces on the manifold. When the classical pointwise non-symmetric RBF formulation is used to solve Laplacian eigenvalue problems, we found that while accurate estimation of the leading spectra can be obtained with large enough data, such an approximation often produces irrelevant complex-valued spectra (or pollution) as the true spectra are real-valued and positive. To avoid such an issue, we introduce a symmetric RBF discrete approximation of the Laplacians induced by a weak formulation on appropriate Hilbert spaces. Unlike the non-symmetric approximation, this formulation guarantees non-negative real-valued spectra and the orthogonality of the eigenvectors. Theoretically, we establish the convergence of the eigenpairs of both the Laplace-Beltrami operator and Bochner Laplacian for the symmetric formulation in the limit of large data with convergence rates. Numerically, we provide supporting examples for approximations of the Laplace-Beltrami operator and various vector Laplacians, including the Bochner, Hodge, and Lichnerowicz Laplacians. 
    more » « less
  2. Lu, Guozhen (Ed.)
    The study of certain differential operators between Sobolev spaces of sections of vector bundles on compact manifolds equipped with rough metric is closely related to the study of locally Sobolev functions on domains in the Euclidean space. In this paper, we present a coherent rigorous study of some of the properties of locally Sobolev-Slobodeckij functions that are especially useful in the study of differential operators between sections of vector bundles on compact manifolds with rough metric. The results of this type in published literature generally can be found only for integer order Sobolev spaces W m , p or Bessel potential spaces H s . Here, we have presented the relevant results and their detailed proofs for Sobolev-Slobodeckij spaces W s , p where s does not need to be an integer. We also develop a number of results needed in the study of differential operators on manifolds that do not appear to be in the literature. 
    more » « less
  3. We analyze the convergence properties of Fermat distances, a family of density-driven metrics defined on Riemannian manifolds with an associated probability measure. Fermat distances may be defined either on discrete samples from the underlying measure, in which case they are random, or in the continuum setting, where they are induced by geodesics under a density-distorted Riemannian metric. We prove that discrete, sample-based Fermat distances converge to their continuum analogues in small neighborhoods with a precise rate that depends on the intrinsic dimensionality of the data and the parameter governing the extent of density weighting in Fermat distances. This is done by leveraging novel geometric and statistical arguments in percolation theory that allow for non-uniform densities and curved domains. Our results are then used to prove that discrete graph Laplacians based on discrete, sample-driven Fermat distances converge to corresponding continuum operators. In particular, we show the discrete eigenvalues and eigenvectors converge to their continuum analogues at a dimension-dependent rate, which allows us to interpret the efficacy of discrete spectral clustering using Fermat distances in terms of the resulting continuum limit. The perspective afforded by our discrete-to-continuum Fermat distance analysis leads to new clustering algorithms for data and related insights into efficient computations associated to density-driven spectral clustering. Our theoretical analysis is supported with numerical simulations and experiments on synthetic and real image data. 
    more » « less
  4. We analyze the convergence properties of Fermat distances, a family of density-driven metrics defined on Riemannian manifolds with an associated probability measure. Fermat distances may be defined either on discrete samples from the underlying measure, in which case they are random, or in the continuum setting, where they are induced by geodesics under a density-distorted Riemannian metric. We prove that discrete, sample-based Fermat distances converge to their continuum analogues in small neighborhoods with a precise rate that depends on the intrinsic dimensionality of the data and the parameter governing the extent of density weighting in Fermat distances. This is done by leveraging novel geometric and statistical arguments in percolation theory that allow for non-uniform densities and curved domains. Our results are then used to prove that discrete graph Laplacians based on discrete, sample-driven Fermat distances converge to corresponding continuum operators. In particular, we show the discrete eigenvalues and eigenvectors converge to their continuum analogues at a dimension-dependent rate, which allows us to interpret the efficacy of discrete spectral clustering using Fermat distances in terms of the resulting continuum limit. The perspective afforded by our discrete-to-continuum Fermat distance analysis leads to new clustering algorithms for data and related insights into efficient computations associated to density-driven spectral clustering. Our theoretical analysis is supported with numerical simulations and experiments on synthetic and real image data. 
    more » « less
  5. Wei, Guofang (Ed.)
    We prove that if a closed, smooth, simply-connected 4-manifold with a circle action admits an almost non-negatively curved sequence of invariant Riemannian metrics, then it also admits a non-negatively curved Riemannian metric invariant with respect to the same action. The same is shown for torus actions of higher rank, giving a classification of closed, smooth, simply-connected 4-manifolds of almost non-negative curvature under the assumption of torus symmetry. 
    more » « less