skip to main content


Title: Pulses within pulses: Concentration‐discharge relationships across temporal scales in a snowmelt‐dominated Rocky Mountain catchment
Award ID(s):
1724433
NSF-PAR ID:
10376498
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Hydrological Processes
Volume:
36
Issue:
9
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    An adaptive learning algorithm coupled with 3D momentum-based feedback is used to identify intense laser pulse shapes that control H 3 + formation from ethane. Specifically, we controlled the ratio of D 2 H + to D 3 + produced from the D 3 C-CH 3 isotopologue of ethane, which selects between trihydrogen cations formed from atoms on one or both sides of ethane. We are able to modify the D 2 H + : D 3 + ratio by a factor of up to three. In addition, two-dimensional scans of linear chirp and third-order dispersion are conducted for a few fourth-order dispersion values while the D 2 H + and D 3 + production rates are monitored. The optimized pulse is observed to influence the yield, kinetic energy release, and angular distribution of the D 2 H + ions while the D 3 + ion dynamics remain relatively stable. We subsequently conducted COLTRIMS experiments on C 2 D 6 to complement the velocity map imaging data obtained during the control experiments and measured the branching ratio of two-body double ionization. Two-body D 3 + + C 2 D 3 + is the dominant final channel containing D 3 + ions, although the three-body D + D 3 + + C 2 D 2 + final state is also observed. 
    more » « less