Eddy covariance measurements quantify the magnitude and temporal variability of land-atmosphere exchanges of water, heat, and carbon dioxide (CO 2 ) among others. However, they also carry information regarding the influence of spatial heterogeneity within the flux footprint, the temporally dynamic source/sink area that contributes to the measured fluxes. A 25 m tall eddy covariance flux tower in Central Illinois, USA, a region where drastic seasonal land cover changes from intensive agriculture of maize and soybean occur, provides a unique setting to explore how the organized heterogeneity of row crop agriculture contributes to observations of land-atmosphere exchange. We characterize the effects of this heterogeneity on latent heat ( LE ), sensible heat ( H ), and CO 2 fluxes ( F c ) using a combined flux footprint and eco-hydrological modeling approach. We estimate the relative contribution of each crop type resulting from the structured spatial organization of the land cover to the observed fluxes from April 2016 to April 2019. We present the concept of a fetch rose, which represents the frequency of the location and length of the prevalent upwind distance contributing to the observations. The combined action of hydroclimatological drivers and land cover heterogeneity within the dynamic flux footprint explain interannual flux variations. We find that smaller flux footprints associated with unstable conditions are more likely to be dominated by a single crop type, but both crops typically influence any given flux measurement. Meanwhile, our ecohydrological modeling suggests that land cover heterogeneity leads to a greater than 10% difference in flux magnitudes for most time windows relative to an assumption of equally distributed crop types. This study shows how the observed flux magnitudes and variability depend on the organized land cover heterogeneity and is extensible to other intensively managed or otherwise heterogeneous landscapes.
more »
« less
Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions
Abstract. The objective of this study was to upscale airborne flux measurements ofsensible heat and latent heat and to develop high-resolution flux maps. Inorder to support the evaluation of coupled atmospheric–land-surface models weinvestigated spatial patterns of energy fluxes in relation to land-surfaceproperties. We used airborne eddy-covariance measurements acquired by the Polar 5research aircraft in June–July 2012 to analyze surface fluxes.Footprint-weighted surface properties were then related to 21 529 sensibleheat flux observations and 25 608 latent heat flux observations using bothremote sensing and modeled data. A boosted regression tree technique wasused to estimate environmental response functions between spatially andtemporally resolved flux observations and corresponding biophysical andmeteorological drivers. In order to improve the spatial coverage and spatialrepresentativeness of energy fluxes we used relationships extracted acrossheterogeneous Arctic landscapes to infer high-resolution surface energy fluxmaps, thus directly upscaling the observational data. These maps of projectedsensible heat and latent heat fluxes were used to assess energy partitioningin northern ecosystems and to determine the dominant energy exchangeprocesses in permafrost areas. This allowed us to estimate energy fluxes forspecific types of land cover, taking into account meteorological conditions.Airborne and modeled fluxes were then compared with measurements from aneddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependentquantification of surface energy fluxes and they provide new insights into theprocesses affecting these fluxes for the main vegetation types inhigh-latitude permafrost areas.
more »
« less
- Award ID(s):
- 1724433
- PAR ID:
- 10376522
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 18
- Issue:
- 13
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 10007 to 10023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.more » « less
-
Estimation of evapotranspiration and recharge flux are fundamental to sustainable water resource management. These fluxes provide valuable insights for decision-makers, enabling them to implement effective strategies that balance water demand with available resources, promote resilience in the face of climate change, and ensure the long-term sustainability of water ecosystems. In-situ observations of evapotranspiration and recharge are scarce and not representative of large areas. An observation driven variational data assimilation system, named LIDA-2 (Land Integrated Data Assimilation framework) is developed to estimate the key parameters (evaporative fraction, bulk heat transfer coefficient, Brooks-Corey parameter) of evapotranspiration and recharge fluxes by assimilating GOES land surface temperature (LST) and SMAP surface soil moisture observations into a coupled water and dual- source energy balance model. Second order information is used to estimate the uncertainty and guide the model toward a well-posed estimation problem. The algorithm is implemented in part of the US southern great plain, and its performance is evaluated through comparison tests, uncertainty analysis and consistency test. Soil moisture and evapotranspiration estimations are validated against in-situ observations. The spatial pattern of estimated annual recharge map is in good agreement with maps from literature. Overall, the VDA based framework demonstrated its efficacy to do largescale mapping of recharge, and evapotranspiration.more » « less
-
Different methods exist to measure or estimate actual crop evapotranspiration (ETa). However, some methods require a large number of data input or strict field conditions. Remote sensing based ETa algorithms based on extreme thermal pixels (hot and cold) have limitations when required extreme pixels are not present in the acquired thermal infra-red imagery. In addition, satellite overpass frequency and spatial pixel resolution may be a limitation for some agricultural fields and micro-climates. Surface energy balance methods that use surface radiometric temperatures often fail to perform well under drought, limited irrigation, salt affected soils, or under sparse vegetation conditions. One option is to measure or estimate the crop/surface sensible heat flux through the aerodynamic temperature approach, then calculate the available energy and solve the energy balance for latent heat flux. Thus, this study presents different published algorithms that characterize the crop or field surface aerodynamic temperature and then applies them to different conditions for evaluation. Determining spatial ETa continuously has the potential to improve the irrigation water management decision making. The aerodynamic temperature approach was initially developed with good results as a function of surface radiometric temperature, air temperature, crop leaf area index, and wind speed or surface aerodynamic resistance. However, the inclusion of the crop fractional percent cover and of a new resistance term (turbulent-mixing row resistance) greatly improved the estimation of the sensible heat and latent heat fluxes, when evaluated with heat flux data derived from eddy covariance energy balance towers. Results also indicate that the aerodynamic method has transferability potential to different regions, crops, and irrigation methods than the conditions encountered in the method development.more » « less
-
Abstract Large-eddy simulations (LES) are an important tool for investigating the longstanding energy-balance-closure problem, as they provide continuous, spatially-distributed information about turbulent flow at a high temporal resolution. Former LES studies reproduced an energy-balance gap similar to the observations in the field typically amounting to 10–30% for heights on the order of 100 m in convective boundary layers even above homogeneous surfaces. The underestimation is caused by dispersive fluxes associated with large-scale turbulent organized structures that are not captured by single-tower measurements. However, the gap typically vanishes near the surface, i.e. at typical eddy-covariance measurement heights below 20 m, contrary to the findings from field measurements. In this study, we aim to find a LES set-up that can represent the correct magnitude of the energy-balance gap close to the surface. Therefore, we use a nested two-way coupled LES, with a fine grid that allows us to resolve fluxes and atmospheric structures at typical eddy-covariance measurement heights of 20 m. Under different stability regimes we compare three different options for lower boundary conditions featuring grassland and forest surfaces, i.e. (1) prescribed surface fluxes, (2) a land-surface model, and (3) a land-surface model in combination with a resolved canopy. We show that the use of prescribed surface fluxes and a land-surface model yields similar dispersive heat fluxes that are very small near the vegetation top for both grassland and forest surfaces. However, with the resolved forest canopy, dispersive heat fluxes are clearly larger, which we explain by a clear impact of the resolved canopy on the relationship between variance and flux–variance similarity functions.more » « less
An official website of the United States government

