skip to main content

Title: Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions
Abstract. The objective of this study was to upscale airborne flux measurements ofsensible heat and latent heat and to develop high-resolution flux maps. Inorder to support the evaluation of coupled atmospheric–land-surface models weinvestigated spatial patterns of energy fluxes in relation to land-surfaceproperties. We used airborne eddy-covariance measurements acquired by the Polar 5research aircraft in June–July 2012 to analyze surface fluxes.Footprint-weighted surface properties were then related to 21 529 sensibleheat flux observations and 25 608 latent heat flux observations using bothremote sensing and modeled data. A boosted regression tree technique wasused to estimate environmental response functions between spatially andtemporally resolved flux observations and corresponding biophysical andmeteorological drivers. In order to improve the spatial coverage and spatialrepresentativeness of energy fluxes we used relationships extracted acrossheterogeneous Arctic landscapes to infer high-resolution surface energy fluxmaps, thus directly upscaling the observational data. These maps of projectedsensible heat and latent heat fluxes were used to assess energy partitioningin northern ecosystems and to determine the dominant energy exchangeprocesses in permafrost areas. This allowed us to estimate energy fluxes forspecific types of land cover, taking into account meteorological conditions.Airborne and modeled fluxes were then compared with measurements from aneddy-covariance tower near Atqasuk. Our results are an important contribution for the more » advanced, scale-dependentquantification of surface energy fluxes and they provide new insights into theprocesses affecting these fluxes for the main vegetation types inhigh-latitude permafrost areas. « less
Authors:
; ; ; ; ;
Award ID(s):
1724433
Publication Date:
NSF-PAR ID:
10376522
Journal Name:
Atmospheric Chemistry and Physics
Volume:
18
Issue:
13
Page Range or eLocation-ID:
10007 to 10023
ISSN:
1680-7324
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Flux measurements of nitrogen oxides (NOx) were made over London usingairborne eddy covariance from a low-flying aircraft. Seven low-altitude flights were conducted over Greater London, performing multiple overpasses across the city during eight days in July 2014. NOx fluxes across theGreater London region (GLR) exhibited high heterogeneity and strong diurnalvariability, with central areas responsible for the highest emission rates(20–30 mg m−2 h−1). Other high-emission areas included the M25 orbital motorway. The complexity of London's emission characteristics makes it challenging to pinpoint single emissions sources definitively usingairborne measurements. Multiple sources, including road transport andresidential, commercial and industrial combustion sources, are all likely to contribute to measured fluxes. Measured flux estimates were compared toscaled National Atmospheric Emissions Inventory (NAEI) estimates, accountingfor monthly, daily and hourly variability. Significant differences were found between the flux-driven emissions and the NAEI estimates acrossGreater London, with measured values up to 2 times higher in Central London than those predicted by the inventory. To overcome the limitations ofusing the national inventory to contextualise measured fluxes, we usedphysics-guided flux data fusion to train environmental response functions(ERFs) between measured flux and environmental drivers (meteorological and surface). The aim was to generate time-of-day emission surfaces usingcalculated ERF relationships for the entire GLR; 98 %more »spatial coverage was achieved across the GLR at 400 m2 spatial resolution. All flight legprojections showed substantial heterogeneity across the domain, with highemissions emanating from Central London and major road infrastructure. Thediurnal emission structure of the GLR was also investigated, through ERF,with the morning rush hour distinguished from lower emissions during the early afternoon. Overall, the integration of airborne fluxes with anERF-driven strategy enabled the first independent generation of surfaceNOx emissions, at high resolution using an eddy-covariance approach,for an entire city region.« less
  2. Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual meanmore »GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.« less
  3. Abstract Large-eddy simulations (LES) are an important tool for investigating the longstanding energy-balance-closure problem, as they provide continuous, spatially-distributed information about turbulent flow at a high temporal resolution. Former LES studies reproduced an energy-balance gap similar to the observations in the field typically amounting to 10–30% for heights on the order of 100 m in convective boundary layers even above homogeneous surfaces. The underestimation is caused by dispersive fluxes associated with large-scale turbulent organized structures that are not captured by single-tower measurements. However, the gap typically vanishes near the surface, i.e. at typical eddy-covariance measurement heights below 20 m, contrary to the findings from field measurements. In this study, we aim to find a LES set-up that can represent the correct magnitude of the energy-balance gap close to the surface. Therefore, we use a nested two-way coupled LES, with a fine grid that allows us to resolve fluxes and atmospheric structures at typical eddy-covariance measurement heights of 20 m. Under different stability regimes we compare three different options for lower boundary conditions featuring grassland and forest surfaces, i.e. (1) prescribed surface fluxes, (2) a land-surface model, and (3) a land-surface model in combination with a resolved canopy. We show that the use ofmore »prescribed surface fluxes and a land-surface model yields similar dispersive heat fluxes that are very small near the vegetation top for both grassland and forest surfaces. However, with the resolved forest canopy, dispersive heat fluxes are clearly larger, which we explain by a clear impact of the resolved canopy on the relationship between variance and flux–variance similarity functions.« less
  4. null (Ed.)
    Abstract The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements ofmore »plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.« less
  5. Evapotranspiration (ET) is a relevant component of the surface moisture budget and is associated with different drivers. The interrelated drivers cause variations at daily to interannual timescales. This study uses structural equation modeling to diagnose the drivers over an ensemble of 45 high-latitude sites, each of which provides at least several years of in situ measurements, including latent heat fluxes derived from eddy covariance flux towers. The sites are grouped by vegetation type (tundra, forest) and the presence or absence of permafrost to determine how the relative importance of different drivers depends on land surface characteristics. Factor analysis is used to quantify the common variance among the variables, while a path analysis procedure is used to assess the independent contributions of different variables. The variability of ET at forest sites generally shows a stronger dependence on relative humidity, while ET at tundra sites is more temperature-limited than moisture-limited. The path analysis shows that ET has a stronger direct correlation with solar radiation than with any other measured variable. Wind speed has the largest independent contribution to ET variability. The independent contribution of solar radiation is smaller because solar radiation also affects ET through various other drivers. The independent contribution ofmore »wind speed is especially apparent at forest wetland sites. For both tundra and forest vegetation, temperature loads higher on the first factor when permafrost is present, implying that ET will become less sensitive to temperature as permafrost thaws.« less