skip to main content


Title: Remote Sensing and Aerodynamic Temperature-Based Energy Balance Models to Estimate Crop Evapotranspiration Rates
Different methods exist to measure or estimate actual crop evapotranspiration (ETa). However, some methods require a large number of data input or strict field conditions. Remote sensing based ETa algorithms based on extreme thermal pixels (hot and cold) have limitations when required extreme pixels are not present in the acquired thermal infra-red imagery. In addition, satellite overpass frequency and spatial pixel resolution may be a limitation for some agricultural fields and micro-climates. Surface energy balance methods that use surface radiometric temperatures often fail to perform well under drought, limited irrigation, salt affected soils, or under sparse vegetation conditions. One option is to measure or estimate the crop/surface sensible heat flux through the aerodynamic temperature approach, then calculate the available energy and solve the energy balance for latent heat flux. Thus, this study presents different published algorithms that characterize the crop or field surface aerodynamic temperature and then applies them to different conditions for evaluation. Determining spatial ETa continuously has the potential to improve the irrigation water management decision making. The aerodynamic temperature approach was initially developed with good results as a function of surface radiometric temperature, air temperature, crop leaf area index, and wind speed or surface aerodynamic resistance. However, the inclusion of the crop fractional percent cover and of a new resistance term (turbulent-mixing row resistance) greatly improved the estimation of the sensible heat and latent heat fluxes, when evaluated with heat flux data derived from eddy covariance energy balance towers. Results also indicate that the aerodynamic method has transferability potential to different regions, crops, and irrigation methods than the conditions encountered in the method development.  more » « less
Award ID(s):
2120906
NSF-PAR ID:
10439578
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Agricultural Science
Volume:
15
Issue:
4
ISSN:
1916-9752
Page Range / eLocation ID:
15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events. 
    more » « less
  2. Abstract The physical processes of heat exchange between lakes and the surrounding atmosphere are important in simulating and predicting terrestrial surface energy balance. Latent and sensible heat fluxes are the dominant physical process controlling ice growth and decay on the lake surface, as well as having influence on regional climate. While one-dimensional lake models have been used in simulating environmental changes in ice dynamics and water temperature, understanding the seasonal to daily cycles of lake surface energy balance and its relationship to lake thermal properties, atmospheric conditions, and how those are represented in models is still an open area of research. We evaluated a pair of one-dimensional lake models, Freshwater Lake (FLake) and the General Lake Model (GLM), to compare modeled latent and sensible heat fluxes against observed data collected by an eddy covariance tower during a 1-yr period in 2017, using Lake Mendota in Madison, Wisconsin, as our study site. We hypothesized transitional periods of ice cover as a leading source of model uncertainty, and we instead found that the models failed to simulate accurate values for large positive heat fluxes that occurred from late August into late December. Our results ultimately showed that one-dimensional models are effective in simulating sensible heat fluxes but are considerably less sensitive to latent heat fluxes than the observed relationships of latent heat flux to environmental drivers. These results can be used to focus future improvement of these lake models especially if they are to be used for surface boundary conditions in regional numerical weather models. Significance Statement While lakes consist of a small amount of Earth’s surface, they have a large impact on local climate and weather. A large amount of energy is stored in lakes during the spring and summer, and then removed from lakes before winter. The effect is particularly noticeable in high latitudes, when the seasonal temperature difference is larger. Modeling this lake energy exchange is important for weather models and measuring this energy exchange is challenging. Here we compare modeled and observed energy exchange, and we show there are large amounts of energy exchange happening in the fall, which models struggle to capture well. During periods of partial ice coverage in early winter, lake behavior can change rapidly. 
    more » « less
  3. Abstract

    Correctly calculating the timing and amount of crop irrigation is crucial for capturing irrigation effects on surface water and energy budgets and land‐atmosphere interactions. This study incorporated a dynamic irrigation scheme into the Noah with multiparameterization land surface model and investigated three methods of determining crop growing season length by agriculture management data. The irrigation scheme was assessed at field scales using observations from two contrasting (irrigated and rainfed) AmeriFlux sites near Mead, Nebraska. Results show that crop‐specific growing‐season length helped capture the first application timing and total irrigation amount, especially for soybeans. With a calibrated soil‐moisture triggering threshold (IRR_CRI), using planting and harvesting dates alone could reasonably predict the first application for maize. For soybeans, additional constraints on growing season were required to correct an early bias in the first modeled application. Realistic leaf area index input was essential for identifying the leaf area index‐based growing season. When transitioning from field to regional scales, the county‐level calibrated IRR_CRI helped mitigate overestimated (underestimated) total irrigation amount in southeastern Nebraska (lower Mississippi River Basin). In these two heavily irrigated regions, irrigation produced a cooling effect of 0.8–1.4 K, a moistening effect of 1.2–2.4 g/kg, a reduction in sensible heat flux by 60–105 W/m2, and an increase in latent heat flux by 75–120 W/m2. Most of irrigation water was used to increase soil moisture and evaporation, rather than runoff. Lacking regional‐scale irrigation timing and crop‐specific parameters makes transferring the evaluation and parameter‐constraint methods from field to regional scales difficult.

     
    more » « less
  4. Abstract

    Detailed assessment of small‐scale heterogeneity in local surface water balance is essential to accurate estimation of evapotranspiration in semiarid climates. However, meteorological approaches are often impractical to implement in sites with sparse and diverse vegetation composition, especially with seasonally variable leaf canopy features. Ground‐based infrared thermometry (TIR) provides spatially and temporally continuous resolution of surface skin temperature that can be directly related to the land surface energy balance. We made repeated measurements with a portable TIR camera to capture seasonal replicates for patch scale heat images for four sagebrush communities. The heat images near peak foliage and near the end of the growing season were compared by computation of surface energy fluxes from TIR sensing to surface energy balance (SEB) and Bowen ratio (BR). Estimates of sensible (H) and latent heat flux (LE) were evaluated with eddy covariance measurements to disaggregate the expression of seasonal phenology of sagebrush species across wetness and elevation. Estimations showed reasonable agreement with ground‐basedLEobservations for most cases (r2 = 0.59–0.76 for SEB and 0.22–0.72 for BR; root mean squared error = 73.4–106.4 W m−2for SEB and 109.9–204.0 W m−2for BR). Predictability declined as the fraction of senescent foliage increased in dry conditions. The field trials suggest the methods have the potential for monitoring land surface energy fluxes and plant health at a very fine spatial scale. The ability to partition heat fluxes from various plant communities over a range of moisture availability will provide valuable information associated with the consumptive water use and phenological processes in the semiarid West.

     
    more » « less
  5. Abstract Measurements made in the Columbia River Basin (Oregon) in an area of irregular terrain during the second Wind Forecast Improvement Project (WFIP 2) field campaign are used to develop an optimized hybrid bulk algorithm to predict the surface turbulent fluxes from readily measured or modelled quantities over dry and wet bare or lightly vegetated soil surfaces. The hybrid (synthetic) algorithm combines (i) an aerodynamic method for turbulent flow which is based on the transfer coefficients (drag coefficient and Stanton number), roughness lengths, and Monin-Obukhov similarity and (ii) a modified Priestley-Taylor (P-T) algorithm with physically based ecophysiological constraints which is essentially based on the surface energy budget (SEB) equation. Soil heat flux in the latter case was estimated from measurements of soil temperature and soil moisture. In the framework of the hybrid algorithm, bulk estimates of the momentum flux and the sensible heat flux are derived from a traditional aerodynamic approach, whereas the latent heat flux (or moisture flux) is evaluated from a modified P-T model. Direct measurements of the surface fluxes (turbulent and radiative) and other ancillary atmospheric/soil parameters made during WFIP 2 for different soil conditions (dry and wet) are used to optimize and tune the hybrid bulk algorithm. The bulk flux estimates are validated against the measured eddy-covariance fluxes. We also discuss the SEB closure over dry and wet surfaces at various timescales based on the modelled and measured fluxes. Although this bulk flux algorithm is optimized for the data collected during the WFIP 2, a hybrid approach can be used for similar flux-tower sites and field campaigns. 
    more » « less