skip to main content


Title: Free-streaming and coupled dark radiation isocurvature perturbations: constraints and application to the Hubble tension
Abstract Dark radiation (DR) appears as a new physics candidate in various scenarios beyond the Standard Model. While it is often assumed that perturbations in DR are adiabatic, they can easily have an isocurvature component if more than one field was present during inflation, and whose decay products did not all thermalize with each other.By implementing the appropriate isocurvature initial conditions (IC), we derive the constraints on both uncorrelated and correlated DR density isocurvature perturbations from the full Planck 2018 data alone, and also in combination with other cosmological data sets.Our study on free-streaming DR (FDR) updates and generalizes the existing bound on neutrino density isocurvature perturbations by including a varying number of relativistic degrees of freedom, and for coupled DR (CDR) isocurvature, we derive the first bound. We also show that for CDRqualitatively new physical effects arise compared to FDR. One such effect is that for isocurvature IC, FDR gives rise to larger CMB anisotropies compared to CDR — contrary to the adiabatic case.More generally, we find that a blue-tilt of DR isocurvature spectrum is preferred. This gives rise to a larger value of the Hubble constant H 0 compared to the standard ΛCDM+Δ N eff cosmology with adiabatic spectra and relaxes the H 0  tension.  more » « less
Award ID(s):
2014165
NSF-PAR ID:
10376589
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2022
Issue:
05
ISSN:
1475-7516
Page Range / eLocation ID:
014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MCMC chains for the GWB analyses performed in the paper "The NANOGrav 15 yr Data Set: Search for Signals from New Physics". 

    The data is provided in pickle format. Each file contains a NumPy array with the MCMC chain (with burn-in already removed), and a dictionary with the model parameters' names as keys and their priors as values. You can load them as

    with open ('path/to/file.pkl', 'rb') as pick: temp = pickle.load(pick) params = temp[0] chain = temp[1]

    The naming convention for the files is the following:

    • igw: inflationary Gravitational Waves (GWs)
    • sigw: scalar-induced GWs
      • sigw_box: assumes a box-like feature in the primordial power spectrum.
      • sigw_delta: assumes a delta-like feature in the primordial power spectrum.
      • sigw_gauss: assumes a Gaussian peak feature in the primordial power spectrum.
    • pt: cosmological phase transitions
      • pt_bubble: assumes that the dominant contribution to the GW productions comes from bubble collisions.
      • pt_sound: assumes that the dominant contribution to the GW productions comes from sound waves.
    • stable: stable cosmic strings
      • stable-c: stable strings emitting GWs only in the form of GW bursts from cusps on closed loops.
      • stable-k: stable strings emitting GWs only in the form of GW bursts from kinks on closed loops.
      • stable-m: stable strings emitting monochromatic GW at the fundamental frequency.
      • stable-n: stable strings described by numerical simulations including GWs from cusps and kinks.
    • meta: metastable cosmic strings
      • meta-l: metastable strings with GW emission from loops only.
      • meta-ls metastable strings with GW emission from loops and segments.
    • super: cosmic superstrings.
    • dw: domain walls
      • dw-sm: domain walls decaying into Standard Model particles.
      • dw-dr: domain walls decaying into dark radiation.

    For each model, we provide four files. One for the run where the new-physics signal is assumed to be the only GWB source. One for the run where the new-physics signal is superimposed to the signal from Supermassive Black Hole Binaries (SMBHB), for these files "_bhb" will be appended to the model name. Then, for both these scenarios, in the "compare" folder we provide the files for the hypermodel runs that were used to derive the Bayes' factors.

    In addition to chains for the stochastic models, we also provide data for the two deterministic models considered in the paper (ULDM and DM substructures). For the ULDM model, the naming convention of the files is the following (all the ULDM signals are superimposed to the SMBHB signal, see the discussion in the paper for more details)

    • uldm_e: ULDM Earth signal.
    • uldm_p: ULDM pulsar signal
      • uldm_p_cor: correlated limit
      • uldm_p_unc: uncorrelated limit
    • uldm_c: ULDM combined Earth + pulsar signal direct coupling 
      • uldm_c_cor: correlated limit
      • uldm_c_unc: uncorrelated limit
    • uldm_vecB: vector ULDM coupled to the baryon number
      • uldm_vecB_cor: correlated limit
      • uldm_vecB_unc: uncorrelated limit 
    • uldm_vecBL: vector ULDM coupled to B-L
      • uldm_vecBL_cor: correlated limit
      • uldm_vecBL_unc: uncorrelated limit
    • uldm_c_grav: ULDM combined Earth + pulsar signal for gravitational-only coupling
      • uldm_c_grav_cor: correlated limit
        • uldm_c_cor_grav_low: low mass region  
        • uldm_c_cor_grav_mon: monopole region
        • uldm_c_cor_grav_low: high mass region
      • uldm_c_unc: uncorrelated limit
        • uldm_c_unc_grav_low: low mass region  
        • uldm_c_unc_grav_mon: monopole region
        • uldm_c_unc_grav_low: high mass region

    For the substructure (static) model, we provide the chain for the marginalized distribution (as for the ULDM signal, the substructure signal is always superimposed to the SMBHB signal)

     
    more » « less
  2. Modern data analysis frequently involves large-scale hypothesis testing, which naturally gives rise to the problem of maintaining control of a suitable type I error rate, such as the false discovery rate (FDR). In many biomedical and technological applications, an additional complexity is that hypotheses are tested in an online manner, one-by-one over time. However, traditional procedures that control the FDR, such as the Benjamini-Hochberg procedure, assume that all p-values are available to be tested at a single time point. To address these challenges, a new field of methodology has developed over the past 15 years showing how to control error rates for online multiple hypothesis testing. In this framework, hypotheses arrive in a stream, and at each time point the analyst decides whether to reject the current hypothesis based both on the evidence against it, and on the previous rejection decisions. In this paper, we present a comprehensive exposition of the literature on online error rate control, with a review of key theory as well as a focus on applied examples.We also provide simulation results comparing different online testing algorithms and an up-to-date overview of the many methodological extensions that have been proposed. 
    more » « less
  3. Abstract

    There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we use theAemulussuite of cosmologicalN-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales (0.1–50h−1Mpc) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics—the projected correlation functionwp(rp), the redshift-space monopole of the correlation functionξ0(s), and the quadrupoleξ2(s)—we emulate statistics that include information about the local environment, namely the underdensity probability functionPU(s) and the density-marked correlation functionM(s). This extends the model ofAemulusIII for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: includingPU(s) andM(s) improves the precision of our constraints on Ωmby 27%,σ8by 19%, and the growth of structure parameter,fσ8, by 12% compared to standard statistics. We additionally find that scales below ∼6h−1Mpc contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration.

     
    more » « less
  4. ABSTRACT

    We study the response of star clusters to individual tidal perturbations using controlled N-body simulations. We consider perturbations by a moving point mass and by a disc, and vary the duration of the perturbation as well as the cluster density profile. For fast perturbations (i.e. ‘shocks’), the cluster gains energy in agreement with theoretical predictions in the impulsive limit. For slow disc perturbations, the energy gain is lower, and this has previously been attributed to adiabatic damping. However, the energy gain due to slow perturbations by a point-mass is similar to, or larger than that due to fast shocks, which is not expected because adiabatic damping should be almost independent of the nature of the tides. We show that the geometric distortion of the cluster during slow perturbations is of comparable importance for the energy gain as adiabatic damping, and that the combined effect can qualitatively explain the results. The half-mass radius of the bound stars after a shock increases up to ∼7 per cent for low-concentration clusters, and decreases ∼3 per cent for the most concentrated ones. The fractional mass loss is a non-linear function of the energy gain, and depends on the nature of the tides and most strongly on the cluster density profile, making semi-analytic model predictions for cluster lifetimes extremely sensitive to the adopted density profile.

     
    more » « less
  5. Aims. We present a detailed visible and near-infrared spectro-interferometric analysis of the Be-shell star o Aquarii from quasi-contemporaneous CHARA/VEGA and VLTI/AMBER observations. Methods. We analyzed spectro-interferometric data in the H α (VEGA) and Br γ (AMBER) lines using models of increasing complexity: simple geometric models, kinematic models, and radiative transfer models computed with the 3D non-LTE code HDUST. Results. We measured the stellar radius of o Aquarii in the visible with a precision of 8%: 4.0 ± 0.3 R ⊙ . We constrained the circumstellar disk geometry and kinematics using a kinematic model and a MCMC fitting procedure. The emitting disk sizes in the H α and Br γ lines were found to be similar, at ~10–12 stellar diameters, which is uncommon since most results for Be stars indicate a larger extension in H α than in Br γ . We found that the inclination angle i derived from H α is significantly lower (~15°) than the one derived from Br γ : i ~ 61.2° and 75.9°, respectively. While the two lines originate from a similar region of the disk, the disk kinematics were found to be near to the Keplerian rotation (i.e., β = −0.5) in Br γ ( β ~ −0.43), but not in H α ( β ~ −0.30). After analyzing all our data using a grid of HDUST models (BeAtlas), we found a common physical description for the circumstellar disk in both lines: a base disk surface density Σ 0 = 0.12 g cm −2 and a radial density law exponent m = 3.0. The same kind of discrepancy, as with the kinematic model, is found in the determination of i using the BeAtlas grid. The stellar rotational rate was found to be very close (~96%) to the critical value. Despite being derived purely from the fit to interferometric data, our best-fit HDUST model provides a very reasonable match to non-interferometric observables of o Aquarii: the observed spectral energy distribution, H α and Br γ line profiles, and polarimetric quantities. Finally, our analysis of multi-epoch H α profiles and imaging polarimetry indicates that the disk structure has been (globally) stable for at least 20 yr. Conclusions. Looking at the visible continuum and Br γ emission line only, o Aquarii fits in the global scheme of Be stars and their circumstellar disk: a (nearly) Keplerian rotating disk well described by the viscous decretion disk (VDD) model. However, the data in the H α line shows a substantially different picture that cannot fully be understood using the current generation of physical models of Be star disks. The Be star o Aquarii presents a stable disk (close to the steady-state), but, as in previous analyses, the measured m is lower than the standard value in the VDD model for the steady-state regime ( m = 3.5). This suggests that some assumptions of this model should be reconsidered. Also, such long-term disk stability could be understood in terms of the high rotational rate that we measured for this star, the rate being a main source for the mass injection in the disk. Our results on the stellar rotation and disk stability are consistent with results in the literature showing that late-type Be stars are more likely to be fast rotators and have stable disks. 
    more » « less