skip to main content


Title: Density Dependence in Three Snake River Sockeye Salmon Nursery Lakes in Central Idaho
Abstract

Snake River Sockeye SalmonOncorhynchus nerka, listed as an endangered species in 1991, currently inhabit three nursery lakes (Redfish, Pettit, and Alturas lakes) in the Sawtooth Valley, Idaho. Conspecific kokanee (lacustrine Sockeye Salmon) are also present in the lakes. Snake River Sockeye Salmon recovery efforts, initially focused on genetic conservation, are now attempting to rebuild naturally spawning populations using hatchery supplementation. However, in Sockeye Salmon nursery lakes, density dependence is frequently observed when elevatedO. nerkaabundance leads to declines in zooplankton biomass, body size, and shifts in community composition. In turn, these changes lead to reductions in juvenileO. nerkagrowth rates, survival, and adult returns. We examined a long‐term data set ofO. nerkapopulation metrics and associated zooplankton community metrics. We found evidence of density dependence within and among nursery lakes. We detected differences in zooplankton biomass, lengths of preferred zooplankton prey (Daphniaspp. and cyclopoid copepods), parr growth rates, and age‐1 smolt size among the three lakes. We found negative relationships betweenO. nerkadensity and zooplankton biomass and size. We identified positive relationships between zooplankton biomass and two response variables: smolt size at migration and growth rates of hatchery parr. The relationships were generally similar among lakes. Variable outcomes were a result of differences inO. nerkadensity (or zooplankton biomass), controlled primarily by the relative proportion of spawning and rearing habitat in each lake. Understanding unique lake habitats, ecological interactions, and the role of density dependence is germane to management of Snake River Sockeye Salmon populations.

 
more » « less
Award ID(s):
1757324
NSF-PAR ID:
10376654
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
North American Journal of Fisheries Management
Volume:
42
Issue:
6
ISSN:
0275-5947
Format(s):
Medium: X Size: p. 1477-1493
Size(s):
["p. 1477-1493"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The phenology of critical biological events in aquatic ecosystems are rapidly shifting due to climate change. Growing variability in phenological cues can increase the likelihood of trophic mismatches, causing recruitment failures in commercially, culturally, and recreationally important fisheries. We tested for changes in spawning phenology of regionally important walleye (Sander vitreus) populations in 194 Midwest US lakes in Minnesota, Michigan, and Wisconsin spanning 1939-2019 to investigate factors influencing walleye phenological responses to climate change and associated climate variability, including ice-off timing, lake physical characteristics, and population stocking history. Data from Wisconsin and Michigan lakes (185 and 5 out of 194 total lakes, respectively) were collected by the Wisconsin Department of Natural Resources (WDNR) and the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) through standardized spring walleye mark-recapture surveys and spring tribal harvest season records. Standardized spring mark-recapture population estimates are performed shortly after ice-off, where following a marking event, a subsequent recapture sampling event is conducted using nighttime electrofishing (typically AC – WDNR, pulsed-DC – GLIFWC) of the entire shoreline including islands for small lakes and index stations for large lakes (Hansen et al. 2015) that is timed to coincide with peak walleye spawning activity (G. Hatzenbeler, WDNR, personal communication; M. Luehring, GLIFWC, personal communication; Beard et al. 1997). Data for four additional Minnesota lakes were collected by the Minnesota Department of Natural Resources (MNDNR) beginning in 1939 during annual collections of walleye eggs and broodstock (Schneider et al. 2010), where date of peak egg take was used to index peak spawning activity. For lakes where spawning location did not match the lake for which the ice-off data was collected, the spawning location either flowed into (Pike River) or was within 50 km of a lake where ice-off data were available (Pine River) and these ice-off data were used. Following the affirmation of off-reservation Ojibwe tribal fishing rights in the Ceded Territories of Wisconsin and the Upper Peninsula of Michigan in 1987, tribal spearfishers have targeted walleye during spring spawning (Mrnak et al. 2018). Nightly harvests are recorded as part of a compulsory creel survey (US Department of the Interior 1991). Using these records, we calculated the date of peak spawning activity in a given lake-year as the day of maximum tribal harvest. Although we were unable to account for varying effort in these data, a preliminary analysis comparing spawning dates estimated using tribal harvest to those determined from standardized agency surveys in the same lake and year showed that they were highly correlated (Pearson’s correlation: r = 0.91, P < 0.001). For lakes that had walleye spawning data from both agency surveys and tribal harvest, we used the data source with the greatest number of observation years. Ice-off phenology data was collected from two sources – either observed from the Global Lake and River Ice Phenology database (Benson et al. 2000)t, or modeled from a USGS region-wide machine-learning model which used North American Land Data Assimilation System (NLDAS) meteorological inputs combined with lake characteristics (lake position, clarity, size, depth, hypsography, etc.) to predict daily water column temperatures from 1979 - 2022, from which ice-off dates could be derived (https://www.sciencebase.gov/catalog/item/6206d3c2d34ec05caca53071; see Corson-Dosch et al. 2023 for details). Modeled data for our study lakes (see (Read et al. 2021) for modeling details), which performed well in reflecting ice phenology when compared to observed data (i.e., highly significant correlation between observed and modeled ice-off dates when both were available; r = 0.71, p < 0.001). Lake surface area (ha), latitude, and maximum depth (m) were acquired from agency databases and lake reports. Lake class was based on a WDNR lakes classification system (Rypel et al. 2019) that categorized lakes based on temperature, water clarity, depth, and fish community. Walleye stocking history was defined using the walleye stocking classification system developed by the Wisconsin Technical Working Group (see also Sass et al. 2021), which categorized lakes based on relative contributions of naturally-produced and stocked fish to adult recruitment by relying heavily on historic records of age-0 and age-1 catch rates and stocking histories. Wisconsin lakes were divided into three groups: natural recruitment (NR), a combination of stocking and natural recruitment (C-ST), and stocked only (ST). Walleye natural recruitment was indexed as age-0 walleye CPE (number of age-0 walleye captured per km of shoreline electrofished) from WDNR and GLIFWC fall electrofishing surveys (see Hansen et al. 2015 for details). We excluded lake-years where stocking of age-0 fish occurred before age-0 surveys to only include measurements of naturally-reproduced fish. 
    more » « less
  2. Abstract

    We used a 27‐year record ofDreissenapopulations in the freshwater tidal Hudson River to describe interannual variation in population density, body size, and body condition; estimate long‐term variation in recruitment, survivorship, and shell growth; and assess possible controls on the populations.

    Dreissenapopulations in the Hudson have been highly variable, with interannual ranges ofc.100‐fold in abundance and biomass, and 7‐fold in mean body mass. This large interannual variation arises from both long‐term trends and 2–5‐year cycles.

    Long‐term trends include the 2008 appearance of the quagga mussel (Dreissenarostriformis), which still forms a small part (<10%) of the dreissenid community, and a decline in zebra mussel body size. The decline in body size was caused by a long‐term decline in adult survivorship rather than a decline in rates of shell growth. We could detect no long‐term trends in adult abundance or spread ofDreissenaonto soft sediments in the Hudson.

    We observed persistent, strong cycles in adult abundance and body size. These were driven by the appearance and decay of eight dominant year classes over the 27 years of our study, and were a result of temporal variation in recruitment rather than temporal variation in survivorship. The observed strongly irregular recruitment appears to arise from strong adult–larval interactions, and is consistent with previous simulation model results showing that interactions between adults and larvae can drive persistent cycling.

    We found evidence that negative density dependence affects recruitment, somatic growth, and body condition ofDreissenain the Hudson. Warm summers may also cause high adult mortality.

    We put our results into the context of a conceptual model ofDreissenapopulation dynamics, and argue that neither the dynamics nor the controls of populations of these important invaders is known satisfactorily.

     
    more » « less
  3. Abstract

    Tropical floodplains secure the protein supply of millions of people, but only sound management can ensure the long‐term continuity of such ecosystem services. Overfishing is a widespread threat to multitrophic systems, but how it affects ecosystem functioning is poorly understood, particularly in tropical freshwater food webs. Models based on temperate lakes frequently assume that primary producers are mostly bottom‐up controlled by nutrient and light limitations, with negligible effects of top‐down forces. Yet this assumption remains untested in complex tropical freshwater systems experiencing marked spatiotemporal variation.

    We use consolidated community‐based fisheries management practices and spatial zoning to test the relative importance of bottom‐up versus top‐down drivers of phytoplankton biomass, controlling for the influence of local to landscape heterogeneity. Our study focuses on 58 large Amazonian floodplain lakes under different management regimes that resulted in a gradient of apex‐predator abundance. These lakes, distributed along ~600 km of a major tributary of the Amazon River, varied widely in size, structure, landscape context, and hydrological seasonality.

    Using generalised linear models, we show that community‐based fisheries management, which controls the density of apex predators, is the strongest predictor of phytoplankton biomass during the dry season, when lakes become discrete landscape units. Water transparency also emerges as an important bottom‐up factor, but phosphorus, nitrogen and several lake and landscape metrics had minor or no effects on phytoplankton biomass. During the wet‐season food pulse, when lakes become connected to adjacent water bodies and homogenise the landscape, only lake depth explained phytoplankton biomass.

    Synthesis and applications. Tropical freshwaters fisheries typically assume that fish biomass is controlled by bottom‐up mechanisms, so that overexploitation of large predators would not affect overall ecosystem productivity. Our results, however, show that top‐down forces are important drivers of primary productivity in tropical lakes, above and beyond the effects of bottom‐up factors. This helps us to understand the enormous success of community‐based ‘fishing agreements’ in the Amazon. Multiple stakeholders should embrace socio‐ecological management practices that shape both bottom‐up and top‐down forces to ensure biodiversity protection, sustainable fisheries yields and food security for local communities and regional economies.

     
    more » « less
  4. Abstract

    Increased global temperatures caused by climate change are causing species to shift their ranges and colonize new sites, creating novel assemblages that have historically not interacted. Species interactions play a central role in the response of ecosystems to climate change, but the role of trophic interactions in facilitating or preventing range expansions is largely unknown.

    The goal of our study was to understand how predators influence the ability of range‐shifting prey to successfully establish in newly available habitat following climate warming. We hypothesized that fish predation facilitates the establishment of colonizing zooplankton populations, because fish preferentially consume larger species that would otherwise competitively exclude smaller‐bodied colonists.

    We conducted a mesocosm experiment with zooplankton communities and their fish predators from lakes of the Sierra Nevada Mountains in California, USA. We tested the effect of fish predation on the establishment and persistence of a zooplankton community when introduced in the presence of higher‐ and lower‐elevation communities at two experimental temperatures in field mesocosms.

    We found that predators reduce the abundance of larger‐bodied residents from the alpine and facilitate the establishment of new lower‐elevation species. In addition, fish predation and warming independently reduced the average body size of zooplankton by up to 30%. This reduction in body size offset the direct effect of warming‐induced increases in population growth rates, leading to no net change in zooplankton biomass or trophic cascade strength.

    We found support for a shift to smaller species with climate change through two mechanisms: (a) the direct effects of warming on developmental rates and (b) size‐selective predation that altered the identity of species’ that could colonize new higher elevation habitat. Our results suggest that predators can amplify the rate of range shifts by consuming larger‐bodied residents and facilitating the establishment of new species. However, the effects of climate warming were dampened by reducing the average body size of community members, leading to no net change in ecosystem function, despite higher growth rates. This work suggests that trophic interactions play a role in the reorganization of regional communities under climate warming.

     
    more » « less
  5. Abstract

    Pacific salmon (Oncorhynchusspp.) are exposed to increased environmental change and multiple human stressors. To anticipate future impacts of global change and to improve sustainable resource management, it is critical to understand how wild salmon populations respond to stressors associated with human‐caused changes such as climate warming and ocean acidification, as well as competition in the ocean, which is intensified by the large‐scale production and release of hatchery reared salmon. Pink salmon (O.gorbuscha) are a keystone species in the North Pacific Ocean and support highly valuable commercial fisheries. We investigated the joint effects of changes in ocean conditions and salmon abundances on the productivity of wild pink salmon. Our analysis focused on Prince William Sound in Alaska, because the region accounts for ~50% of the global production of hatchery pink salmon with local hatcheries releasing 600–700 million pink salmon fry annually. Using 60 years of data on wild pink salmon abundances, hatchery releases, and ecological conditions in the ocean, we find evidence that hatchery pink salmon releases negatively affect wild pink salmon productivity, likely through competition between wild and hatchery juveniles in nearshore marine habitats. We find no evidence for effects of ocean acidification on pink salmon productivity. However, a change in the leading mode of North Pacific climate in 1988–1989 weakened the temperature–productivity relationship and altered the strength of intraspecific density dependence. Therefore, our results suggest non‐stationary (i.e., time varying) and interactive effects of ocean climate and competition on pink salmon productivity. Our findings further highlight the need for salmon management to consider potential adverse effects of large‐scale hatchery production within the context of ocean change.

     
    more » « less