skip to main content


Title: Predators drive community reorganization during experimental range shifts
Abstract

Increased global temperatures caused by climate change are causing species to shift their ranges and colonize new sites, creating novel assemblages that have historically not interacted. Species interactions play a central role in the response of ecosystems to climate change, but the role of trophic interactions in facilitating or preventing range expansions is largely unknown.

The goal of our study was to understand how predators influence the ability of range‐shifting prey to successfully establish in newly available habitat following climate warming. We hypothesized that fish predation facilitates the establishment of colonizing zooplankton populations, because fish preferentially consume larger species that would otherwise competitively exclude smaller‐bodied colonists.

We conducted a mesocosm experiment with zooplankton communities and their fish predators from lakes of the Sierra Nevada Mountains in California, USA. We tested the effect of fish predation on the establishment and persistence of a zooplankton community when introduced in the presence of higher‐ and lower‐elevation communities at two experimental temperatures in field mesocosms.

We found that predators reduce the abundance of larger‐bodied residents from the alpine and facilitate the establishment of new lower‐elevation species. In addition, fish predation and warming independently reduced the average body size of zooplankton by up to 30%. This reduction in body size offset the direct effect of warming‐induced increases in population growth rates, leading to no net change in zooplankton biomass or trophic cascade strength.

We found support for a shift to smaller species with climate change through two mechanisms: (a) the direct effects of warming on developmental rates and (b) size‐selective predation that altered the identity of species’ that could colonize new higher elevation habitat. Our results suggest that predators can amplify the rate of range shifts by consuming larger‐bodied residents and facilitating the establishment of new species. However, the effects of climate warming were dampened by reducing the average body size of community members, leading to no net change in ecosystem function, despite higher growth rates. This work suggests that trophic interactions play a role in the reorganization of regional communities under climate warming.

 
more » « less
NSF-PAR ID:
10456693
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
89
Issue:
10
ISSN:
0021-8790
Page Range / eLocation ID:
p. 2378-2388
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.

    Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.

    We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.

    We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.

    Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.

     
    more » « less
  2. Abstract

    A major question in ecology is how often competing species evolve to reduce competitive interactions and facilitate coexistence. One untested route for a reduction in competitive interactions is through ontogenetic changes in the trophic niche of one or more of the interacting species. In such cases, theory predicts that two species can coexist if the weaker competitor changes its resource niche to a greater degree with increased body size than the superior competitor.

    We tested this prediction using stable isotopes that yield information about the trophic position (δ15N) and carbon source (δ13C) of two coexisting fish species: Trinidadian guppiesPoecilia reticulataand killifishRivulus hartii.

    We examined fish from locations representing three natural community types: (1) where killifish and guppies live with predators, (2) where killifish and guppies live without predators and (3) where killifish are the only fish species. We also examined killifish from communities in which we had introduced guppies, providing a temporal sequence of the community changes following the transition from a killifish only to a killifish–guppy community.

    We found that killifish, which are the weaker competitor, had a much larger ontogenetic niche shift in trophic position than guppies in the community where competition is most intense (killifish–guppy only). This result is consistent with theory for size‐structured populations, which predicts that these results should lead to stable coexistence of the two species. Comparisons with other communities containing guppies, killifish and predators and ones where killifish live by themselves revealed that these results are caused primarily by a loss of ontogenetic niche changes in guppies, even though they are the stronger competitor. Comparisons of these natural communities with communities in which guppies were translocated into sites containing only killifish showed that the experimental communities were intermediate between the natural killifish–guppy community and the killifish–guppy–predator community, suggesting contemporary evolution in these ontogenetic trophic differences.

    These results provide comparative evidence for ontogenetic niche shifts in contributing to species coexistence and comparative and experimental evidence for evolutionary or plastic changes in ontogenetic niche shifts following the formation of new communities.

     
    more » « less
  3. Abstract

    Changes in seasonality associated with climate warming (e.g. temperature, growing season duration) are likely to alter invertebrate prey biomass and availability in aquatic ecosystems through direct and indirect influences on physiology and phenology, particularly in arctic lakes. However, despite warmer thermal regimes, photoperiod will remain unchanged such that potential shifts resulting from longer and warmer growing seasons could be limited by availability of sunlight, especially at lower trophic levels. Thus, a better understanding of warming effects on invertebrate prey throughout the growing season (e.g. early, peak, late) is important to understand arctic lake food‐web dynamics in a changing climate.

    Here, we use a multifaceted approach to evaluate prey availability to predators in lakes of arctic Alaska. In a laboratory mesocosm experiment, we measured different metrics of abundance for snails (Lymnaea elodes) and zooplankton (Daphnia middendorffiana) across three time periods (early, mid‐ and late growing season) and across three temperature and photoperiod treatments (control, increased temperature and increased temperature × photoperiod). Additionally, we used generalised additive models and generalised additive mixed‐effects models to relate long‐term empirical observations of zooplankton biomass (1983–2015) to observed temperature regimes in an arctic lake. We then simulated zooplankton biomass for the warmest temperature observations across the growing season to inform likely zooplankton biomass regimes under future change.

    We observed variable responses by snails and zooplankton across experiments and treatments. Early in the growing season, snail development was accelerated at multiple life stages (e.g. egg and juvenile). In mid‐season, in accordance with warmer temperatures, we observed significantly increasedDaphniaabundances. However, in the late season,Daphniaappeared to be limited by photoperiod. Confirming our experimental results, our models of zooplankton biomass showed an increase of nearly 20% in warmer years. Further, these model estimates could be conservative as the consumptive demand of fishes may increase in warmer years as well.

    Overall, our results highlight the importance of interactive effects of temperature and seasonality. Based primarily on temperature, we can readily predict the response of fish metabolism in warmer temperatures. However, in this context, we generally require a better understanding of climate‐driven responses of important invertebrate prey resources. Our results suggest invertebrate prey biomass and availability are likely to respond positively with climate change based on temperature and seasonality, as well as proportionally to the metabolic requirements of fish predators. While further research is necessary to understand how other food‐web components will respond climate change, our findings suggest that the fish community at the top of arctic lake food webs will have adequate prey base in a warming climate.

     
    more » « less
  4. Abstract

    While many species distributions are shifting poleward or up in elevation in response to a changing climate, others are shifting their habitats along localized gradients in environmental conditions as abiotic conditions become more stressful. Whether species are moving across regional or local environmental gradients in response to climate change, range‐shifting species become embedded in established communities of competitors and predators. The consequences of these shifts for both resident and shifting species are often unknown, as it can be difficult to isolate the effects of multiple species interactions.

    Using a model system of insects in high‐elevation ponds in the Rocky Mountains of Colorado, we sought to disentangle the effects of predation and intraguild interactions on the survival and development of a semi‐permanent pond resident caddisflyLimnephilus externusand the habitat‐shifting caddisAsynarchus nigriculusthat is being forced into semi‐permanent ponds as temporary ponds dry too quickly to complete development.

    We conducted a manipulative in‐situ pond cage experiment in whichL. externusandA. nigriculuscaddisfly larvae in single‐species treatments and together were exposed to the presence/absence of predatoryDytiscusdiving beetle larvae. This approach allowed us to isolate the effects of intraguild interactions and predation on the survival and development of both the resident and habitat‐shifting species.

    We found that intraguild interactions had strong negative effects on the resident and habitat‐shifting species. Intraguild interactions reduced the survival of the residentL. externusand increased the variation in survival of the shiftingA. nigriculus. However,Dytiscuspredators reduced these negative effects, stabilizing the community by increasingL. externussurvival and reducing variation inA. nigriculussurvival. We also found that intraguild interactions reducedL. externusbiomass but resulted in increasedA. nigriculusdevelopment.A. nigriculusdevelopment was also increased by predation.

    Our results show that strong intraguild interactions between resident and shifting species are likely to have negative consequences for both species. However, the presence of predators reduces these negative consequences of the habitat shift on both the resident and the shifting.

     
    more » « less
  5. Abstract

    Providing taxonomically precise dietary characterisations for freshwater fish species is critical for gaining a deeper understanding of the trophic dynamics present in freshwater ecosystems. However, our current understanding of freshwater trophic ecology has relied almost entirely upon direct observation of foraging attempts or morphological identification of partially digested prey. Due to the limitations of morphological dietary characterisations of soft‐bodied arthropod prey, these techniques offer dietary descriptions that can lack satisfactory taxonomic resolution and may bias our interpretations of freshwater food webs.

    Recent advancements in DNA‐based prey identification have allowed for species‐level prey characterisations for many terrestrial insectivores, although these techniques have seldom been applied to understand the diets of freshwater fish. This study used DNA metabarcoding with high‐throughput, next‐generation sequencing to provide species‐level descriptions of prey composition for three naturally reproducing, syntopic freshwater trout species.

    Our study supports previous findings that suggested that brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) are generalist predators that display a high degree of seasonal dietary flexibility. Prey composition varied significantly across sampling periods, with detection frequency of terrestrial prey greater in thespring/summerperiod compared to theautumnperiod.

    Pollution‐sensitive aquatic macroinvertebrates were detected frequently across both sampling periods, highlighting the importance of high‐quality streams that support such arthropod prey. DNA metabarcoding also detected a high richness of soft‐bodied, Lepidoptera prey species, a taxonomic group that has been largely underrepresented in previous trout dietary studies that used traditional morphological techniques.

    This study demonstrates the applicability of dietary DNA metabarcoding for the detection and species‐level identification of arthropods found in freshwater fish lavage samples and highlights the importance of taxonomically precise techniques when attempting to better understand trophic interactions within freshwater communities.

     
    more » « less