- Award ID(s):
- 2120430
- PAR ID:
- 10376660
- Date Published:
- Journal Name:
- IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
- Page Range / eLocation ID:
- 17010 to 17020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Language understanding is essential for the navigation agent to follow instructions. We observe two kinds of issues in the instructions that can make the navigation task challenging: 1. The mentioned landmarks are not recognizable by the navigation agent due to the different vision abilities of the instructor and the modeled agent. 2. The mentioned landmarks are applicable to multiple targets, thus not distinctive for selecting the target among the candidate viewpoints. To deal with these issues, we design a translator module for the navigation agent to convert the original instructions into easy-to-follow sub-instruction representations at each step. The translator needs to focus on the recognizable and distinctive landmarks based on the agent’s visual abilities and the observed visual environment. To achieve this goal, we create a new synthetic sub-instruction dataset and design specific tasks to train the translator and the navigation agent. We evaluate our approach on Room2Room (R2R), Room4room (R4R), and Room2Room Last (R2R-Last) datasets and achieve state-of-the-art results on multiple benchmarks.more » « less
-
The advances in deep reinforcement learning re- cently revived interest in data-driven learning based approaches to navigation. In this paper we propose to learn viewpoint invariant and target invariant visual servoing for local mobile robot navigation; given an initial view and the goal view or an image of a target, we train deep convolutional network controller to reach the desired goal. We present a new architecture for this task which rests on the ability of establishing correspondences between the initial and goal view and novel reward structure motivated by the traditional feedback control error. The advantage of the proposed model is that it does not require calibration and depth information and achieves robust visual servoing in a variety of environments and targets without any parameter fine tuning. We present comprehensive evaluation of the approach and comparison with other deep learning architectures as well as classical visual servoing methods in visually realistic simulation environment [1]. The presented model overcomes the brittleness of classical visual servoing based methods and achieves significantly higher generalization capability compared to the previous learning approaches.more » « less
-
Few-shot knowledge graph (KG) completion task aims to perform inductive reasoning over the KG: given only a few support triplets of a new relation R (e.g., (chop, R, kitchen), (read, R, library)), the goal is to predict the query triplets of the same unseen relation R, e.g., (sleep, R, ?). Current approaches cast the problem in a meta-learning framework, where the model needs to be first jointly trained over many training few-shot tasks, each being defined by its own relation, so that learning/prediction on the target few-shot task can be effective. However, in real-world KGs, curating many training tasks is a challenging ad hoc process. We proposed Connection Subgraph Reasoner (CSR), which can make predictions for the target few-shot task directly without the need for pre-training on the human curated set of training tasks. The key to CSR is that we explicitly model a shared connection subgraph between support and query triplets, as inspired by the principle of eliminative induction. To adapt to specific KG, we design a corresponding self-supervised pretraining scheme with the objective of reconstructing automatically sampled connection subgraphs. Our pretrained model can then be directly applied to target few-shot tasks without the need for training few-shot tasks. Extensive experiments on real KGs, including NELL, FB15K-237, and ConceptNet, demonstrate the effectiveness of our framework: we have shown that even a learning-free implementation of CSR can already perform competitively to existing methods on target few-shot tasks; with pretraining, CSR can achieve significant gains of up to 52% on the more challenging inductive few-shot tasks where the entities are also unseen during (pre)training.more » « less
-
Abstract Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single‐neuron activity from human participants as they completed a paired‐task session consisting of a passive‐viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired‐task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept‐related activations in the working memory task, as well as target‐location and serial‐position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts.
-
null (Ed.)Communication between human and mobile agents is getting increasingly important as such agents are widely deployed in our daily lives. Vision-and-Dialogue Navigation is one of the tasks that evaluate the agent’s ability to interact with humans for assistance and navigate based on natural language responses. In this paper, we explore the Navigation from Dialogue History (NDH) task, which is based on the Cooperative Vision-and-Dialogue Navigation (CVDN) dataset, and present a state-of-the-art model which is built upon Vision-Language transformers. However, despite achieving competitive performance, we find that the agent in the NDH task is not evaluated appropriately by the primary metric – Goal Progress. By analyzing the performance mismatch between Goal Progress and other metrics (e.g., normalized Dynamic Time Warping) from our state-of-the-art model, we show that NDH’s sub-path based task setup (i.e., navigating partial trajectory based on its correspondent subset of the full dialogue) does not provide the agent with enough supervision signal towards the goal region. Therefore, we propose a new task setup called NDH-Full which takes the full dialogue and the whole navigation path as one instance. We present a strong baseline model and show initial results on this new task. We further describe several approaches that we try, in order to improve the model performance (based on curriculum learning, pre-training, and data-augmentation), suggesting potential useful training methods on this new NDH-Full task.more » « less