Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of PSEP are not well understood, especially the intermediate processes leading to delivery. PSEP is an electrical method, yet the relationship between PSEP and electrical impedance remains underexplored. In this study, a device capable of measuring impedance and performing PSEP is developed and the changes in transepithelial electrical impedance (TEEI) are monitored. These measurements show TEEI increases following PSEP, unlike other electroporation methods. The authors then demonstrate how cell culture conditions and electrical waveforms influence this response. More importantly, TEEI response features are correlated with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label-free delivery also allows improved temporal resolution of transient processes following PSEP, which the authors expect will aid PSEP optimization for new cell types and cargos.
more »
« less
M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform
Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum .
more »
« less
- Award ID(s):
- 2125383
- PAR ID:
- 10376715
- Editor(s):
- Waldor, Matthew K.
- Date Published:
- Journal Name:
- PLOS Biology
- Volume:
- 20
- Issue:
- 9
- ISSN:
- 1545-7885
- Page Range / eLocation ID:
- e3001727
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of PSEP are not well understood, especially the intermediate processes leading to delivery. PSEP is an electrical method, yet the relationship between PSEP and electrical impedance remains underexplored. In this study, a device capable of measuring impedance and performing PSEP is developed and the changes in transepithelial electrical impedance (TEEI) are monitored. These measurements show TEEI increases following PSEP, unlike other electroporation methods. The authors then demonstrate how cell culture conditions and electrical waveforms influence this response. More importantly, TEEI response features are correlated with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label‐free delivery also allows improved temporal resolution of transient processes following PSEP, which the authors expect will aid PSEP optimization for new cell types and cargos.more » « less
-
Efficient delivery to the cell nucleus remains a significant challenge for many biomolecules, including anticancer drugs, proteins and DNAs. Despite numerous attempts to improve nuclear import including the use of nuclear localization signal (NLS) peptides and nanoparticle carriers, they are limited by the nanoparticle size, conjugation method, dependence on the functional nuclear import and intracellular trafficking mechanisms. To overcome these limitations, here we report that the nanomechanical force from plasmonic nanobubbles increases nuclear membrane permeability and promotes universal uptake of macromolecules into the nucleus, including macromolecules that are larger than the nuclear pore complex and would otherwise not enter the nucleus. Importantly, we show that plasmonic nanobubble-induced nanomechanical transduction significantly improves gene transfection and protein expression, compared to standard electroporation treatment alone. This novel nanomechanical transduction increases the size range and is broadly applicable for macromolecule delivery to the cell nucleus, leading to new opportunities and applications including for gene therapy and anticancer drug delivery.more » « less
-
Abstract In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow‐through microfluidics, engineered substrates, and automated probe‐based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate‐based electroporation platforms and high throughput, high control methods in general.more » « less
-
null (Ed.)Blood is an attractive carrier for plasmid and RNA based medicine in cell therapy. Electroporation serves as its favorable delivery tool for simple operation, quick internalization, minimum cell culture involvement, and low contamination risk. However, the delivery outcomes of electroporation heavily depend on the treated cells such as their type, size, and orientation to the electric field, not ideal for highly heterogeneous blood samples. Herein a new electroporation system was developed towards effective transfection to cells in blood regardless their large diversity. By coupling replica molding and infiltration coating processes, we successfully configured a three-dimensional electrode comprised of a polymer micropillar array on which carbon nanotubes (CNTs) are partially embedded. During electroporation, cells sag between micropillars and deform to form conformal contact with their top and side surface. The implanted CNTs not only provide a robust conductive coating for the polymer micropattern, but also have their protruded ends face the cell membrane vertically everywhere with maximum transmembrane potential. Regardless their largely varied sizes and random dispersion, both individual blood cell type and whole blood samples were effectively transfected with plasmid DNA (85% after 24 hrs and 95% after 72 hrs, or 2.5-3.0 folds enhancement). High-dose RNA probes were also introduced which regulate better the expression levels of exogenous and endogenous genes in blood cells. Besides its promising performance on non-viral delivery route to cell-related studies and therapy, the invovled new fabrication method also provides a convenient and effective way to construct flexible electronics with stable micro/nanofeatures on the surface.more » « less
An official website of the United States government

