The brevity of the instrumental record limits our knowledge of tropical cyclone activity on multidecadal to longer timescales and hampers our ability to diagnose climatic controls. Sedimentary archives containing event beds provide essential data on tropical cyclone activity over centuries and millennia. This review highlights the advantages and limitations of this approach and how these reconstructions have illuminated patterns of tropical cyclone activity and potential climate drivers over the last millennium. Key elements to developing high-quality reconstructions include confident attribution of event beds to tropical cyclones, assessing the potential role of other mechanisms, and evaluating the potential influence of geomorphic changes, sea-level variations, and sediment supply on a settings’ susceptibility to event bed deposition. Millennium-long histories of severe tropical cyclone occurrence are now available from many locations in the western North Atlantic and western North Pacific, revealing clear regional shifts in activity likely related to intervals of large-scale ocean-atmosphere reorganization.▪Prior to significant human influence in Earth's climate, natural climate variability dramatically altered patterns of tropical cyclone activity.▪For some regions (e.g., The Bahamas and the Marshall Islands), earlier intervals of tropical cyclone activity exceeded what humans have experienced during the recent period of instrumental measurements (∼1850 CE–present).▪Risk assessments based on the short instrumental record likely underestimate the threat posed by tropical cyclones in many regions.▪Changes in atmospheric and oceanic circulation associated with the Little Ice Age (∼1400–1800 CE) resulted in significant regional changes in tropical cyclone activity.▪Given the past sensitivity of tropical cyclone activity to climate change, we should anticipate regional shifts in tropical cyclone activity in response to ongoing anthropogenic warming of the planet.
more »
« less
US Gulf Coast tropical cyclone precipitation influenced by volcanism and the North Atlantic subtropical high
Abstract Understanding the response of tropical cyclone precipitation to ongoing climate change is essential to determine associated flood risk. However, instrumental records are short-term and fail to capture the full range of variability in seasonal totals of precipitation from tropical cyclones. Here we present a 473-year-long tree-ring proxy record comprised of longleaf pine from excavated coffins, a historical house, remnant stumps, and living trees in southern Mississippi, USA. We use cross-dating dendrochronological analyses calibrated with instrumental records to reconstruct tropical cyclone precipitation stretching back to 1540 CE. We compare this record to potential climatic controls of interannual and multidecadal tropical cyclone precipitation variability along the Gulf Coast. We find that tropical cyclone precipitation declined significantly in the two years following large Northern Hemisphere volcanic eruptions and is influenced by the behavior of the North Atlantic subtropical high-pressure system. Additionally, we suggest that tropical cyclone precipitation variability is significantly, albeit weakly, related to Atlantic multidecadal variability. Finally, we suggest that we need to establish a network for reconstructing precipitation from tropical cyclones in the Southeast USA if we want to capture regional tropical cyclone behavior and associated flood risks.
more »
« less
- PAR ID:
- 10376728
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Historical records of Atlantic hurricane activity, extending back to 1851, show increasing activity over time, but much or all of this trend has been attributed to lack of observations in the early portion of the record. Here we use a tropical cyclone downscaling model driven by three global climate analyses that are based mostly on sea surface temperature and surface pressure data. The results support earlier statistically-based inferences that storms were undercounted in the 19thcentury, but in contrast to earlier work, show increasing tropical cyclone activity through the period, interrupted by a prominent hurricane drought in the 1970s and 80 s that we attribute to anthropogenic aerosols. In agreement with earlier work, we show that most of the variability of North Atlantic tropical cyclone activity over the last century was directly related to regional rather than global climate change. Most metrics of tropical cyclones downscaled over all the tropics show weak and/or insignificant trends over the last century, illustrating the special nature of North Atlantic tropical cyclone climatology.more » « less
-
null (Ed.)Global warming due to anthropogenic factors can be amplified or dampened by natural climate oscillations, especially those involving sea surface temperatures (SSTs) in the North Atlantic which vary on a multidecadal scale (Atlantic multidecadal variability, AMV). Be- cause the instrumental record of AMV is short, long-term behavior of AMV is unknown, but climatic teleconnections to regions beyond the North Atlantic offer the prospect of reconstructing AMV from high-resolution records elsewhere. Annually resolved titanium from an annually laminated sedimentary record from Ellesmere Island, Canada, shows that the record is strongly influenced by AMV via atmospheric circulation anomalies. Significant correlations between this High-Arctic proxy and other highly resolved Atlantic SST proxies demonstrate that it shares the multidecadal variability seen in the Atlantic. Our record provides a reconstruction of AMV for the past ∼3 millennia at an unprecedented time resolution, indicating North Atlantic SSTs were coldest from ∼1400–1800 CE, while current SSTs are the warmest in the past ∼2,900 y.more » « less
-
Abstract Instrumental observations indicate that Amazon precipitation and streamflow extremes have increased during the last 40 years, possibly due to anthropogenic changes and natural variability. How unprecedented these changes might be is difficult to determine because some paleoclimatic, instrumental, and climate model simulations suggest that Amazonian precipitation and streamflow may be subject to multidecadal variability with return intervals longer than most direct observations. A new 258‐yearlong tree‐ring chronology ofCedrela odoratahas been developed in the eastern Amazon and has been used to reconstruct wet season precipitation totals from 1759–2016. Reconstructed drought extremes are associated with significant sea surface temperature anomalies over the tropical Pacific and Atlantic Oceans. Strong multidecadal variance is identified in the reconstruction that may reflect a component of natural rainfall variability relevant to forest ecosystem dynamics and suggesting that recent hydroclimate changes over the eastern Amazon may not be unprecedented over the past 258 years.more » « less
-
Climate in the Iberian Peninsula is impacted by both internal and external climate modes, which are expected to shift in position and intensity due to anthropogenic climate change. Examples of such modes include the North Atlantic Oscillation (NAO) and the East Atlantic mode (EA). Changes in the behavior in these regional climate modes could significantly alter water availability in the Iberian Peninsula, a region identified by model projections as particularly sensitive to future warming scenarios. There has been extensive research and paleoclimate reconstructions of the NAO and its impacts on Iberian climate. However, to date few paleoclimate records have been developed to evaluate the behavior of the EA over the late Holocene and into the present. The development of highly resolved regional paleoclimate records from Iberia is critical for improving the predictive capability of regional climate models under future warming scenarios and to determine the extent to which different teleconnection patterns are influencing climate. Here we present a near annually resolved stable carbon isotope (δ13C) and oxygen (δ18O) isotope time-series from three stalagmites from the Algarve region of southern Portugal from two caves within 2.3 km of each other. The southern coast of Portugal offers an ideal location to study the behavior of the EA due to the modulation of storm tracks coming across the North Atlantic Ocean into Iberia associated with the EA. U/Th dating indicates that our composite record spans the last millennia continuously through 2018 CE. Two stalagmites (GIA-19-1 and C-18-1) stopped growing around 1600 CE, during a dry interval, and sample GIA-19-2 grew continuously since the 15th century. GIA-19-2, with sub-annual resolution, is compared to modern instrumental records to evaluate the influence of specific environmental controls, including temperature and precipitation amounts. Isotope data from all three stalagmites exhibit substantial multidecadal variability indicating relatively wet and dry intervals. Based on our initial results, it is likely that both temperature and precipitation amount effects are the dominant controls on isotopic variability in these stalagmites. Comparison of the GIA-19-2 oxygen isotope time-series with the instrumental index (1950 to present) and reconstructed index (1650 CE to present) of the EA mode shows strong coherence with both index records. Hence, multidecadal variability observed in our stalagmite isotope time series may provide insight into the historical behavior of the EA mode and its resulting impacts on southern Portuguese climate.more » « less
An official website of the United States government
