Abstract Understanding the response of tropical cyclone precipitation to ongoing climate change is essential to determine associated flood risk. However, instrumental records are short-term and fail to capture the full range of variability in seasonal totals of precipitation from tropical cyclones. Here we present a 473-year-long tree-ring proxy record comprised of longleaf pine from excavated coffins, a historical house, remnant stumps, and living trees in southern Mississippi, USA. We use cross-dating dendrochronological analyses calibrated with instrumental records to reconstruct tropical cyclone precipitation stretching back to 1540 CE. We compare this record to potential climatic controls of interannual and multidecadal tropical cyclone precipitation variability along the Gulf Coast. We find that tropical cyclone precipitation declined significantly in the two years following large Northern Hemisphere volcanic eruptions and is influenced by the behavior of the North Atlantic subtropical high-pressure system. Additionally, we suggest that tropical cyclone precipitation variability is significantly, albeit weakly, related to Atlantic multidecadal variability. Finally, we suggest that we need to establish a network for reconstructing precipitation from tropical cyclones in the Southeast USA if we want to capture regional tropical cyclone behavior and associated flood risks.
more »
« less
This content will become publicly available on May 30, 2026
Reconstructing Tropical Cyclone Activity from Sedimentary Archives
The brevity of the instrumental record limits our knowledge of tropical cyclone activity on multidecadal to longer timescales and hampers our ability to diagnose climatic controls. Sedimentary archives containing event beds provide essential data on tropical cyclone activity over centuries and millennia. This review highlights the advantages and limitations of this approach and how these reconstructions have illuminated patterns of tropical cyclone activity and potential climate drivers over the last millennium. Key elements to developing high-quality reconstructions include confident attribution of event beds to tropical cyclones, assessing the potential role of other mechanisms, and evaluating the potential influence of geomorphic changes, sea-level variations, and sediment supply on a settings’ susceptibility to event bed deposition. Millennium-long histories of severe tropical cyclone occurrence are now available from many locations in the western North Atlantic and western North Pacific, revealing clear regional shifts in activity likely related to intervals of large-scale ocean-atmosphere reorganization.▪Prior to significant human influence in Earth's climate, natural climate variability dramatically altered patterns of tropical cyclone activity.▪For some regions (e.g., The Bahamas and the Marshall Islands), earlier intervals of tropical cyclone activity exceeded what humans have experienced during the recent period of instrumental measurements (∼1850 CE–present).▪Risk assessments based on the short instrumental record likely underestimate the threat posed by tropical cyclones in many regions.▪Changes in atmospheric and oceanic circulation associated with the Little Ice Age (∼1400–1800 CE) resulted in significant regional changes in tropical cyclone activity.▪Given the past sensitivity of tropical cyclone activity to climate change, we should anticipate regional shifts in tropical cyclone activity in response to ongoing anthropogenic warming of the planet.
more »
« less
- Award ID(s):
- 1854980
- PAR ID:
- 10638845
- Publisher / Repository:
- Annual Review of Earth and Planetary Sciences
- Date Published:
- Journal Name:
- Annual Review of Earth and Planetary Sciences
- Volume:
- 53
- Issue:
- 1
- ISSN:
- 0084-6597
- Page Range / eLocation ID:
- 251 to 281
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tropical cyclone (TC) models indicate that continued planet warming will likely increase the global proportion of powerful TCs (specifically Categories 4 and 5 hurricanes), increasingly jeopardizing low-lying coastal communities and resources such as the Pelican Cays, Belize. The combination of increased coastal development and continued relative sea-level rise puts these communities at even higher risk of damage from TCs. The short TC observational record for the western Caribbean hampers the extensive study of TC activity on centennial timescales, which hinders our ability to fully understand past TC climatology and improve the accuracy of TC models. To better assess TC risk, paleotempestological studies are necessary to put future scenarios in perspective. Here, we present a high-resolution reconstruction of coarser-grained sediment deposits associated with TC (predominately ≥ Category 2 hurricanes) passages over the past 1200 years from Elbow and Lagoon Cays, two coral reef-bounded lagoons at the northern and southern end of the Pelican Cays; the most southern Belizean paleotempestological site to date. Coincident timing of historic storms with statistically significant coarser-grained deposits within cay lagoon sediment cores allows us to determine which historic TCs likely generated event layers (tempestites) archived in the sediment record. Our compilation frequency analysis indicates one active interval (above-normal TC activity) from 1740-1950 CE and one quiet interval (below-normal TC activity) from 850-1018 CE. The active and quiet intervals in the Pelican Cays composite record are anticorrelated with those from nearby and re-analyzed TC records to the north, including the Great Blue Hole (∼100 km north) and the Northeast Yucatan (∼380 km northwest). This site-specific anticorrelation in TC activity along the western Caribbean indicates that we cannot rely on any one single TC record to represent regional TC activity. However, we cannot discount that these anticorrelated periods between the western Caribbean sites are due to randomness. To confirm that the anticorrelation in TC activity among sites from the western Caribbean is indeed a function of climate change and not randomness, an integration of more records and TC model simulations over the past millennium is necessary to assess the significance of centennial-scale variability in TC activity recorded in reconstructions from the western Caribbean.more » « less
-
The extensive chondrichthyan fossil record spans 400+ million years and has a global distribution. Paleontological studies provide a foundation of description and taxonomy to support deeper forays into ecology and evolution considering geographic, morphologic, and functional changes through time with nonanalog species and climate states. Although chondrichthyan teeth are most studied, analyses of dermal denticle metrics and soft tissue imprints are increasing. Recent methodological advances in morphology and geochemistry are elucidating fine-scale details, whereas large datasets and ecological modeling are broadening taxonomic, temporal, and geographic perspectives. The combination of ecological metrics and modeling with environmental reconstruction and climate simulations is opening new horizons to explore form and function, demographic dynamics, and food web structure in ancient marine ecosystems. Ultimately, the traits and taxa that endured or perished during the many catastrophic upheaval events in Earth's history contribute to conservation paleobiology, which is a much-needed perspective for extant chondrichthyans.▪The longevity and abundance of the chondrichthyan fossil record elucidates facets of ecological, evolutionary, and environmental histories.▪Though lacking postcranial, mineralized skeletons, dental enameloid and dermal denticles exquisitely preserve morphology and geochemistry.▪Technical advances in imaging, geochemistry, and modeling clarify the linkages between form and function with respect to physiology, diet, and environment.▪Conservation efforts can benefit from the temporal and spatial perspective of chondrichthyan persistence through past global change events.more » « less
-
Abstract We examine the evidence for large‐scale tropical hydroclimate changes over the Common Era based on a compilation of 67 tropical hydroclimate records from 55 sites and assess the consistency between the reconstructed hydroclimate changes and those simulated by transient model simulations of the last millennium. Our synthesis of the proxy records reveals several regionally coherent patterns on centennial time scales. From 800 to 1000 CE, records from the eastern Pacific and parts of Mesoamerica indicate a pronounced drying event relative to background conditions of the Common Era. In addition, 1400–1700 CE is marked by pronounced hydroclimate changes across the tropics, including dry and/or isotopically enriched conditions in South and East Asia, wet and/or isotopically depleted conditions in the central Andes and southern Amazon in South America, and fresher and/or isotopically depleted conditions in the Maritime Continent. We find notable dissimilarities between the regional hydroclimate changes and global‐scale and hemispheric‐scale temperature reconstructions, indicating that more work needs to be done to understand the mechanisms of the widespread tropical hydroclimate changes during the LIA. Apropos to previous interpretations of large‐scale reorganization of tropical Pacific climate during the LIA, we do not find support for a large‐scale southward shift of the Pacific Intertropical Convergence Zone, while evidence for a strengthened Pacific Walker Circulation and/or an equatorward contraction of the monsoonal Asian‐Australian rain belt exists from limited geographic regions but require additional paleoclimate constraints. Transient climate model simulations exhibit weak forced long‐term tropical rainfall changes over the last millennium but provide several important insights to the proxy reconstructions.more » « less
-
The Hikurangi margin has been an important global focus for subduction zone research for the last decade. International Ocean Discovery Program drilling and geophysical investigations have advanced our understanding of megathrust slip behavior. Along and across the margin, detailed imaging reveals that the megathrust structure varies spatially and evolves over time. Heterogeneous properties of the plate boundary zone and overriding plate are impacted by the evolving nature of regional tectonics and inherited overriding plate structure. Along-strike variability in thickness of subducting sediment and northward increasing influence of seamount subduction strongly influence mega-thrust lithologies, fluid pressure, and permeability structure. Together, these exert strong control on spatial variations in coupling, slow slip, and seismicity distribution. Thicker incoming sediment, combined with a compressional upper plate, influences deeper coupling at southern Hikurangi, where paleoseismic investigations reveal recurring great (Mw> 8.0) earthquakes.▪The Hikurangi Subduction Zone is marked by large-scale changes in the subducting Pacific Plate and the overlying plate, with varied tectonic stress, crustal thickness, and sediment cover.▪The roughness of the lower plate influences the variability in megathrust slip behavior, particularly where seamounts enhance subduction of fluid-rich sediments.▪Variations in sediment composition impact the strength of the subduction interface, with the southern Hikurangi Subduction Zone exhibiting a more uniform megathrust fault.▪Properties of the upper plate influence fluid pressures and contribute to the observed along-strike variations in Hikurangi plate coupling and slip behavior.more » « less
An official website of the United States government
