skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Incorporating Pedestrian Movement in Computational Models of COVID-19 Spread during Air-travel
COVID-19 pandemic has resulted in an over 60 % reduction in airtravel worldwide according to some estimates. The high economic and public perception costs of potential superspreading during air-travel necessitates research efforts that model, explain and mitigate disease spread. The long-duration exposure to infected passengers and the limited air circulation in the cabin are considered to be responsible for the infection spread during flight. Consequently, recent public health measures are primarily based on these aspects. However, a survey of recent on-flight outbreaks indicates that some aspects of the COVID-19 spread, such as long-distance superspreading, cannot be explained without also considering the movement of people. Another factor that could be influential but has not gained much attention yet is the unpredictable passenger behavior. Here, we use a novel infection risk model that is linked with pedestrian dynamics to accurately capture these aspects of infection spread. The model is parameterized through spatiotemporal analysis of a recent superspreading event in a restaurant in China. The passenger movement during boarding and deplaning, as well as the in-plane movement, are modeled with social force model and agent-based model respectively. We utilize the model to evaluate what-if scenarios on the relative effectiveness of policies and procedures such as masking, social distancing, as well as synergistic effects by combining different approaches in airplanes and other contexts. We find that in certain instances independent strategies can combine synergistically to reduce infection probability, by more than a sum of individual strategies  more » « less
Award ID(s):
1931483
PAR ID:
10376780
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Aerospace Conference
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we develop a multiscale model combining social-force-based pedestrian movement with a population level stochastic infection transmission dynamics framework. The model is then applied to study the infection transmission within airplanes and the transmission of the Ebola virus through casual contacts. Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in West Africa, carry considerable economic and human costs. We use the computational model to evaluate the effects of passenger movement within airplanes and air-travel policies on the geospatial spread of infectious diseases. We find that boarding policy by an airline is more critical for infection propagation compared to deplaning policy. Enplaning in two sections resulted in fewer infections than the currently followed strategy with multiple zones. In addition, we found that small commercial airplanes are better than larger ones at reducing the number of new infections in a flight. Aggregated results indicate that passenger movement strategies and airplane size predicted through these network models can have significant impact on an event like the 2014 Ebola epidemic. The methodology developed here is generic and can be readily modified to incorporate the impact from the outbreak of other directly transmitted infectious diseases. 
    more » « less
  2. In this paper we develop a multiscale model combining social-force-based pedestrian movement with a population level stochastic infection transmission dynamics framework. The model is then applied to study the infection transmission within airplanes and the transmission of the Ebola virus through casual contacts. Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in West Africa, carry considerable economic and human costs. We use the computational model to evaluate the effects of passenger movement within airplanes and air-travel policies on the geospatial spread of infectious diseases. We find that boarding policy by an airline is more critical for infection propagation compared to deplaning policy. Enplaning in two sections resulted in fewer infections than the currently followed strategy with multiple zones. In addition, we found that small commercial airplanes are better than larger ones at reducing the number of new infections in a flight. Aggregated results indicate that passenger movement strategies and airplane size predicted through these network models can have significant impact on an event like the 2014 Ebola epidemic. The methodology developed here is generic and can be readily modified to incorporate the impact from the outbreak of other directly transmitted infectious diseases. 
    more » « less
  3. To understand infectious disease dynamics, we need to understand the inextricably intertwined nature of the ecology and evolution of pathogens and hosts. Epidemiological dynamics of many infectious diseases have highlighted the importance of considering the demographics of the societies in which they spread, particularly with respect to age structure. In addition, the waves of the recent COVID-19 pandemic driven by variant replacements at an unprecedented speed show that it is vital to consider the evolutionary aspects. The classic trade-off theory of virulence addresses aspects of pathogen evolution, but here we explore in more detail the possibility of society-specific evolutionarily stable strategies (ESS) during an unfolding pandemic. Theory posits the existence under some conditions of an ESS representing the evolutionary endpoint of change. By using a demographically realistic model incorporating infection rates that vary with age, we outline which evolutionary scenarios are plausible. Focusing on the rate of infection and duration of infectivity, we ask whether an ESS exists, what characterizes it, and as a result which long-term public-health consequences may be expected. We demonstrate that the ESS of an evolving pathogen depends upon the background age-dependent frailty and mortality rates. Our findings shed important light on the plausible long-term trajectories of highly evolvable novel pathogens. 
    more » « less
  4. This paper presents an integrated computational modelling framework combining pedestrian dynamics and infection spread models, to analyse the infectious disease spread during the different stages of air-travel. While, commercial air travel is central to the global mobility of goods and people, it has also been identified as a leading factor in the spread of several epidemic diseases including influenza, SARS and Ebola. The mixing of susceptible and infectious individuals in these high people density locations like airports involves pedestrian movement which needs to be taken into account in the modeling studies of disease dynamics. We develop a Molecular Dynamics based social force modeling approach for pedestrian dynamics and combine it with a stochastic infection dynamics model to evaluate the spread of viral infectious diseases in airplanes and airports. We apply the multiscale model for various key components of air travel and suggest strategies to reduce the number of contacts and the spread of infectious diseases. We simulate pedestrian movement during boarding and deplaning of some typical commercial airplane models and movement of people through security check areas. We found specific boarding strategies that reduce the number of contacts. Further, we find that smaller airplanes are more effective in reducing the number of contacts compared to larger airplanes. We propose certain queue configuration that reduces contacts between people and mitigate disease spread. 
    more » « less
  5. To ensure the safe operation of schools, workplaces, nursing homes, and other businesses during COVID-19 pandemic there is an urgent need to develop cost-effective public health strategies. Here we focus on the cruise industry which was hit early by the COVID-19 pandemic, with more than 40 cruise ships reporting COVID-19 infections. We apply mathematical modeling to assess the impact of testing strategies together with social distancing protocols on the spread of the novel coronavirus during ocean cruises using an individual-level stochastic model of the transmission dynamics of COVID-19. We model the contact network, the potential importation of cases arising during shore excursions, the temporal course of infectivity at the individual level, the effects of social distancing strategies, different testing scenarios characterized by the test’s sensitivity profile, and testing frequency. Our findings indicate that PCR testing at embarkation and daily testing of all individuals aboard, together with increased social distancing and other public health measures, should allow for rapid detection and isolation of COVID-19 infections and dramatically reducing the probability of onboard COVID-19 community spread. In contrast, relying only on PCR testing at embarkation would not be sufficient to avert outbreaks, even when implementing substantial levels of social distancing measures. 
    more » « less