skip to main content


Search for: All records

Award ID contains: 1931483

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. COVID-19 pandemic has resulted in an over 60 % reduction in airtravel worldwide according to some estimates. The high economic and public perception costs of potential superspreading during air-travel necessitates research efforts that model, explain and mitigate disease spread. The long-duration exposure to infected passengers and the limited air circulation in the cabin are considered to be responsible for the infection spread during flight. Consequently, recent public health measures are primarily based on these aspects. However, a survey of recent on-flight outbreaks indicates that some aspects of the COVID-19 spread, such as long-distance superspreading, cannot be explained without also considering the movement of people. Another factor that could be influential but has not gained much attention yet is the unpredictable passenger behavior. Here, we use a novel infection risk model that is linked with pedestrian dynamics to accurately capture these aspects of infection spread. The model is parameterized through spatiotemporal analysis of a recent superspreading event in a restaurant in China. The passenger movement during boarding and deplaning, as well as the in-plane movement, are modeled with social force model and agent-based model respectively. We utilize the model to evaluate what-if scenarios on the relative effectiveness of policies and procedures such as masking, social distancing, as well as synergistic effects by combining different approaches in airplanes and other contexts. We find that in certain instances independent strategies can combine synergistically to reduce infection probability, by more than a sum of individual strategies 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Airlines have introduced a back-to-front boarding process in response to the COVID-19 pandemic. It is motivated by the desire to reduce passengers' likelihood of passing close to seated passengers when they take their seats. However, our prior work on the risk of Ebola spread in aeroplanes suggested that the driving force for increased exposure to infection transmission risk is the clustering of passengers while waiting for others to stow their luggage and take their seats. In this work, we examine whether the new boarding processes lead to increased or decreased risk of infection spread. We also study the reasons behind the risk differences associated with different boarding processes. We accomplish this by simulating the new boarding processes using pedestrian dynamics and compare them against alternatives. Our results show that back-to-front boarding roughly doubles the infection exposure compared with random boarding. It also increases exposure by around 50% compared to a typical boarding process prior to the outbreak of COVID-19. While keeping middle seats empty yields a substantial reduction in exposure, our results show that the different boarding processes have similar relative strengths in this case as with middle seats occupied. We show that the increased exposure arises from the proximity between passengers moving in the aisle and while seated. Such exposure can be reduced significantly by prohibiting the use of overhead bins to stow luggage. Our results suggest that the new boarding procedures increase the risk of exposure to COVID-19 compared with prior ones and are substantially worse than a random boarding process. 
    more » « less
  5. This paper presents an integrated computational modelling framework combining pedestrian dynamics and infection spread models, to analyse the infectious disease spread during the different stages of air-travel. While, commercial air travel is central to the global mobility of goods and people, it has also been identified as a leading factor in the spread of several epidemic diseases including influenza, SARS and Ebola. The mixing of susceptible and infectious individuals in these high people density locations like airports involves pedestrian movement which needs to be taken into account in the modeling studies of disease dynamics. We develop a Molecular Dynamics based social force modeling approach for pedestrian dynamics and combine it with a stochastic infection dynamics model to evaluate the spread of viral infectious diseases in airplanes and airports. We apply the multiscale model for various key components of air travel and suggest strategies to reduce the number of contacts and the spread of infectious diseases. We simulate pedestrian movement during boarding and deplaning of some typical commercial airplane models and movement of people through security check areas. We found specific boarding strategies that reduce the number of contacts. Further, we find that smaller airplanes are more effective in reducing the number of contacts compared to larger airplanes. We propose certain queue configuration that reduces contacts between people and mitigate disease spread. 
    more » « less