skip to main content


Title: Unusual Intensity Patterns of OH(6,2) and O( 1 S) Airglow Driven by Long‐Period Waves Observed Over the Andes Lidar Observatory
Abstract

Simultaneous OH(6,2) and O(1S) nightglow measurements obtained at the Andes Lidar Observatory (ALO) (30.3°S, 70.7°W) from September 2011 to April 2018 have been analyzed to investigate an unusual intensity pattern, that is, O(1S) nightglow intensity enhancement concurrent with OH(6,2) nightglow intensity weakening. We identified 142 nights showing that behavior during the ∼6.5‐year period. The data set comprised of these 142 nights displayed a semiannual occurrence rate with maxima during the equinoxes. A semidiurnal tide fitting applied to the 30‐min bin size monthly averaged data shows that the largest amplitudes of the tide occur in April–May and August–September in both OH(6,2) and O(1S). SABER atomic oxygen (O) climatology near ALO shows higher O densities near the equinoxes, with maximum O densities in March and September at ∼96 km. Lidar temperature analysis suggests that the O(1S) enhancement concurrent with the OH(6,2) weakening is often accompanied by a temperature increase at 96 km and a decrease at 87 km. Simulations using airglow models have also been carried out to investigate the effect of a long‐period oscillation on the OH(6,2) and O(1S) airglow intensities. A sensitivity study has also been conducted to illustrate the effect of the characteristics of a long‐period wave on the airglow intensity patterns.

 
more » « less
Award ID(s):
1759573 1903336 1903346
NSF-PAR ID:
10376802
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper reports our simulations of the volume emission rate of the O(1D) redline nightglow perturbed by waves traveling across the thermosphere at around 250 km altitude. Waves perturb the electronic and neutral background densities and temperatures in the region and modify the O(1D) layer intensity as it is captured by ground‐based nightglow instruments. The changes in the integrated volume emission rate are calculated for various vertical wavelengths of the perturbations. We demonstrate that, as the solar activity intensifies, the vertical scales of most likely observable TID waves become larger. For high solar activity, we demonstrate that only waves presenting vertical wavelengths larger than 360 km are likely to be observed. The variation of the range of likely observable vertical wavelengths with the solar cycle offers a plausible explanation for the low occurrence rate of TID in measurements of the redline nightglow during high solar activity periods. We have compared our results with those of Negale et al. (2018;https://doi.org/10.1029/2017JA024876) and Paulino et al (2018;https://doi.org/10.5194/angeo-36-265-2018) to verify that observed vertical wavelengths distribute around 140–210 km, in good correspondence with our predicted threshold wavelength160 km for very low solar cycle period.

     
    more » « less
  2. Abstract

    The long‐term statistical characteristics of high‐frequency quasi‐monochromatic gravity waves are presented using multi‐year airglow images observed at Andes Lidar Observatory (ALO, 30.3°S, 70.7°W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and show evidence of seasonal variations. In austral winter (May–August), the observed wave occurrence frequency is higher, and preferential wave propagation is equator‐ward. In austral summer (November–February), the wave occurrence frequency is lower, and the waves mostly propagate pole‐ward. Critical‐layer filtering plays a moderate role in determining the preferential propagation direction in certain months, especially for waves with a smaller observed phase speed (less than typical background winds). The observed wave occurrence and preferential propagation direction are related to the locations of convection activities nearby and their relative distance to ALO. However, direct wave generations are less likely due to the large distance between the ALO and convective sources. Other mechanisms such as secondary wave generation and possible ducted propagation should be considered. The estimated mean momentum fluxes have typical values of a few m2 s−2.

     
    more » « less
  3. null (Ed.)
    The cancellation factor (CF) is a model for the ratio between gravity wave perturbations in the nightglow intensity to those in the ambient temperature. The CF model allows us to estimate the momentum and energy flux of gravity waves seen in nightglow images, as well as the divergence of these fluxes due to waves propagating through the mesosphere and lower thermosphere region, where the nightglow and the Na layers are located. This study uses a set of wind/temperature Na lidar data and zenith nightglow image observations of the OH and O(1S) emissions to test and validate the CF model from the experimental perspective. The dataset analyzed was obtained during campaigns carried out at the Andes Lidar Observatory (ALO), Chile, in 2015, 2016, and 2017. The modeled CF was compared with observed CF values calculated using the ratio of wave amplitude in nightglow images to that seen in lidar temperatures for vertically propagating waves. We show that, in general, the modeled CF underestimates the observed CF results. However, the O(1S) emission line has better agreement with respect to the modeled value due to its supposedly simpler nightglow photochemistry. In contrast, the observed CF for the OH emission deviates by a factor of two from the modeled CF asymptotic value. 
    more » « less
  4. Abstract

    A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened with time. The MWs displayed dominant horizontal wavelengths ranging from ~40 to 70 km and temperature perturbation amplitudes as large as ~35 K. The waves were characterized by an unusual, “saw‐tooth” pattern in the larger‐scale temperature field exhibiting narrow cold phases separating much broader warm phases with increasing temperatures toward the east, indicative of strong overturning and instability development. Estimates of the momentum fluxes during this event revealed a distinct periodicity (~25 min) with three well‐defined peaks ranging from ~600 to 800 m2/s2, among the largest ever inferred at these altitudes. These results suggest that MW forcing at small horizontal scales (<100 km) can play large roles in the momentum budget of the mesopause region when forcing and propagation conditions allow them to reach mesospheric altitudes with large amplitudes. A detailed analysis of the instability dynamics accompanying this breaking MW event is presented in a companion paper, Fritts et al. (2019,https://doi.org/10.1029/2019jd030899).

     
    more » « less
  5. Abstract

    This article presents the results of a week of observations around the 2 July 2019, total Chilean eclipse. The eclipse occurred between 19:22 and 21:46 UTC, with complete sun disc obscuration at 20:38–20:40 UTC (16:38–16:40 LT) over the Andes Lidar Observatory (ALO) at (30.3°S, 70.7°W). Observations were carried out using ALO instrumentation with the goal to observe possible eclipse‐induced effects on the mesosphere and lower thermosphere region (MLT; 75–105 km altitude). To complement our data set, we have also utilized TIMED/SABER temperatures and ionosonde electron density measurements taken at the University of La Serena's Juan Soldado Observatory. Observed events include an unusual fast, bow‐shaped gravity wave structure in airglow images, mesosphere temperature mapper brightness as well as in lidar temperature with 150 km horizontal wavelength 24 min observed period, and vertical wavelength of 25 km. Also, a strong zonal wind shear above 100 km in meteor radar scans as well as the occurrence of a sporadic E layer around 100 km from ionosonde measurements. Finally, variations in temperature and density and the presence of a descending sporadic sodium layer near 98 km were seen in lidar data. We discuss the effects of the eclipse in the MLT, which can shed light on a sparse set of measurements during this type of event. Our results point out several effects of eclipse‐associated changes in the atmosphere below and above but not directly within the MLT.

     
    more » « less