This paper concerns the representation of angular momentum operators in the Born–Oppenheimer theory of polyatomic molecules and the various forms of the associated conservation laws. Topics addressed include the question of whether these conservation laws are exactly equivalent or only to some order of the Born–Oppenheimer parameter κ = ( m/ M) 1/4 and what the correlation is between angular momentum quantum numbers in the various representations. These questions are addressed in both problems involving a single potential energy surface and those with multiple, strongly coupled surfaces and in both the electrostatic model and those for which fine structure and electron spin are important. The analysis leads to an examination of the transformation laws under rotations of the electronic Hamiltonian; of the basis states, both adiabatic and diabatic, along with their phase conventions; of the potential energy matrix; and of the derivative couplings. These transformation laws are placed in the geometrical context of the structures in the nuclear configuration space that are induced by rotations, which include the rotational orbits or fibers, the surfaces upon which the orientation of the molecule changes but not its shape, and the section, an initial value surface that cuts transversally through the fibers. Finally,more »
Sharp boundaries for the swampland
A bstract We reconsider the problem of bounding higher derivative couplings in consistent weakly coupled gravitational theories, starting from general assumptions about analyticity and Regge growth of the Smatrix. Higher derivative couplings are expected to be of order one in the units of the UV cutoff. Our approach justifies this expectation and allows to prove precise bounds on the order one coefficients. Our main tool are dispersive sum rules for the Smatrix. We overcome the difficulties presented by the graviton pole by measuring couplings at small impact parameter, rather than in the forward limit. We illustrate the method in theories containing a massless scalar coupled to gravity, and in theories with maximal supersymmetry.
 Award ID(s):
 1915093
 Publication Date:
 NSFPAR ID:
 10376819
 Journal Name:
 Journal of High Energy Physics
 Volume:
 2021
 Issue:
 7
 ISSN:
 10298479
 Sponsoring Org:
 National Science Foundation
More Like this


We contrast Dirac’s theory of transition probabilities and the theory of nonadiabatic transition probabilities, applied to a perturbed system that is coupled to a bath. In Dirac’s analysis, the presence of an excited state k0⟩ in the timedependent wave function constitutes a transition. In the nonadiabatic theory, a transition occurs when the wave function develops a term that is not adiabatically connected to the initial state. Landau and Lifshitz separated Dirac’s excitedstate coefficients into a term that follows the adiabatic theorem of Born and Fock and a nonadiabatic term that represents excitation across an energy gap. If the system remains coherent, the two approaches are equivalent. However, differences between the two approaches arise when coupling to a bath causes dephasing, a situation that was not treated by Dirac. For twolevel model systems in static electric fields, we add relaxation terms to the Liouville equation for the time derivative of the density matrix. We contrast the results obtained from the two theories. In the analysis based on Dirac’s transition probabilities, the steady state of the system is not an equilibrium state; also, the steadystate population ρkk,s increases with increasing strength of the perturbation and its value depends on the dephasing timemore »

This work provides quantitative tests of the extent of violation of two inequalities applicable to qubits coupled into Bell states, using IBM's publicly accessible quantum computers. Violations of the inequalities are well established. Our purpose is not to test the inequalities, but rather to determine how well quantum mechanical predictions can be reproduced on quantum computers, given their current fault rates. We present results for the spin projections of two entangled qubits, along three axes A , B , and C , with a fixed angle θ between A and B and a range of angles θ ′ between B and C . For any classical object that can be characterized by three observables with two possible values, inequalities govern relationships among the probabilities of outcomes for the observables, taken pairwise. From set theory, these inequalities must be satisfied by all such classical objects; but quantum systems may violate the inequalities. We have detected clearcut violations of one inequality in runs on IBM's publicly accessible quantum computers. The Clauser–Horne–Shimony–Holt (CHSH) inequality governs a linear combination S of expectation values of products of spin projections, taken pairwise. Finding S > 2 rules out local, hidden variable theories for entangled quantum systems.more »

A bstract Strong (sublattice or tower) formulations of the Weak Gravity Conjecture (WGC) imply that, if a weakly coupled gauge theory exists, a tower of charged particles drives the theory to strong coupling at an ultraviolet scale well below the Planck scale. This tower can consist of lowspin states, as in KaluzaKlein theory, or highspin states, as with weaklycoupled strings. We provide a suggestive bottomup argument based on the mild p form WGC that, for any gauge theory coupled to a fundamental axion through a θF ∧ F term, the tower is a stringy one. The chargecarrying string states at or below the WGC scale gM Pl are simply axion strings for θ , with charged modes arising from anomaly inflow. KaluzaKlein theories evade this conclusion and postpone the appearance of highspin states to higher energies because they lack a θF ∧ F term. For abelian KaluzaKlein theories, modified arguments based on additional abelian groups that interact with the KaluzaKlein gauge group sometimes pinpoint a mass scale for charged strings. These arguments reinforce the Emergent String and Distant Axionic String Conjectures. We emphasize the unproven assumptions and weak points of the arguments, which provide interesting targets for further work. Inmore »

A bstract We compute 1 /λ corrections to the fourpoint functions of halfBPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 superYangMills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of KaluzaKlein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to oneloop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in themore »