skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The dynamics of freestanding films: predictions for poly(2-chlorostyrene) based on bulk pressure dependence and thoughtful sample averaging
In this paper we model the segmental relaxation in poly(2-chlorostyrene) 18 nm freestanding films, using only data on bulk samples to characterize the system, and predict film relaxation times ( τ ) as a function of temperature that are in semi-quantitative agreement with film data. The ability to translate bulk characterization into film predictions is a direct result of our previous work connecting the effects of free surfaces in films with those of changing pressure in the bulk. Our approach combines the Locally Correlated Lattice (LCL) equation of state for prediction of free volume values ( V free ) at any given density ( ρ ), which are then used in the Cooperative Free Volume (CFV) rate model to predict τ ( T , V free ). A key feature of this work is that we calculate the locally averaged density profile as a function of distance from the surface, ρ av ( z ), using the CFV-predicted lengthscale, L coop ( z ), over which rearranging molecular segments cooperate. As we have shown in the past, ρ av ( z ) is significantly broader than the localized profile, ρ ( z ), which translates into a relaxation profile, τ ( z ), exhibiting a breadth that mirrors experimental and simulated results. In addition, we discuss the importance of averaging the log of position dependent relaxation times across a film sample (〈log  τ ( z )〉), as opposed to averaging the relaxation times, themselves, in order to best approximate a whole sample-averaged value that can be directly compared to experiment.  more » « less
Award ID(s):
2006504
PAR ID:
10376850
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
42
ISSN:
1744-683X
Page Range / eLocation ID:
9755 to 9764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We apply the cooperative free volume (CFV) rate model for pressure-dependent dynamics of glass-forming liquids and polymer melts, focusing on two new applications of the model, to natural rubber and to polyurea. In CFV, segmental relaxation times, τ, are analyzed as a function of temperature (T) and free volume (Vfree), where the latter provides an insightful route to expressing dynamics relative to using the system's overall total volume (V). Vfree is defined as the difference between the total volume and the volume at close packing and is predicted independently of the dynamics for any temperature and pressure using the locally correlated lattice equation-of-state analysis of characteristic thermodynamic data. The new results for natural rubber and polyurea are discussed in the context of results on a set of polymeric and small-molecule glass formers that had previously been modeled with CFV. We also discuss the results in the context of recent connections that we have made with the density-scaling approach. 
    more » « less
  2. The relationship between the dynamics and structure of amorphous thin films and nanocomposites near their glass transition is an important problem in soft-matter physics. Here, we develop a simple theoretical approach to describe the density profile and the a-relaxation time of a glycerol-silica nanocomposite (S. Cheng et al., J. Chem. Phys., 2015, 143, 194704). We begin by applying the Derjaguin approximation, where we replace the curved surface of the particle with the planar one; thus, modeling the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular dynamics (MD) simulation data of Cheng et al., we approximate the density profile of a supported liquid thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct an appropriate density functional, from which the density profile emerges through the minimization of free energy. Our final assumption is that of a consistent, temperature-independent scaled density profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation time and temperature, we can employ Doolittle-type analysis (‘‘naı ¨ ve’’ free-volume model), to calculate the relaxation time based on temperature and film thickness. We then convert the film thickness into the interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare our model predictions with experimental data, resulting in a good agreement. The proposed approach can be easily extended to other nanocomposite and film systems. 
    more » « less
  3. Glass-forming liquids exhibit long-lived, spatially correlated dynamical heterogeneity, in which some nm-scale regions in the fluid relax more slowly than others. In the nanoscale vicinity of an interface, glass-formers also exhibit the emergence of massive interfacial gradients in glass transition temperature Tg and relaxation time τ. Both of these forms of heterogeneity have a major impact on material properties. Nevertheless, their interplay has remained poorly understood. Here, we employ molecular dynamics simulations of polymer thin films in the isoconfigurational ensemble in order to probe how bulk dynamic heterogeneity alters and is altered by the large gradient in dynamics at the surface of a glass-forming liquid. Results indicate that the τ spectrum at the surface is broader than in the bulk despite being shifted to shorter times, and yet it is less spatially correlated. This is distinct from the bulk, where the τ distribution becomes broader and more spatially organized as the mean τ increases. We also find that surface gradients in slow dynamics extend further into the film than those in fast dynamics—a result with implications for how distinct properties are perturbed near an interface. None of these features track locally with changes in the heterogeneity of caging scale, emphasizing the local disconnect between these quantities near interfaces. These results are at odds with conceptions of the surface as reflecting simply a higher “rheological temperature” than the bulk, instead pointing to a complex interplay between bulk dynamic heterogeneity and spatially organized dynamical gradients at interfaces in glass-forming liquids. 
    more » « less
  4. ABSTRACT We measure the rate of environmentally driven star formation quenching in galaxies at z ∼ 1, using eleven massive ($$M\approx 2\times 10^{14}\, \mathrm{M}_\odot$$) galaxy clusters spanning a redshift range 1.0 < z < 1.4 from the GOGREEN sample. We identify three different types of transition galaxies: ‘green valley’ (GV) galaxies identified from their rest-frame (NUV − V) and (V − J) colours; ‘blue quiescent’ (BQ) galaxies, found at the blue end of the quiescent sequence in (U − V) and (V − J) colour; and spectroscopic post-starburst (PSB) galaxies. We measure the abundance of these galaxies as a function of stellar mass and environment. For high-stellar mass galaxies (log M/M⊙ > 10.5) we do not find any significant excess of transition galaxies in clusters, relative to a comparison field sample at the same redshift. It is likely that such galaxies were quenched prior to their accretion in the cluster, in group, filament, or protocluster environments. For lower stellar mass galaxies (9.5 < log M/M⊙ < 10.5) there is a small but significant excess of transition galaxies in clusters, accounting for an additional ∼5–10 per cent of the population compared with the field. We show that our data are consistent with a scenario in which 20–30 per cent of low-mass, star-forming galaxies in clusters are environmentally quenched every Gyr, and that this rate slowly declines from z = 1 to z = 0. While environmental quenching of these galaxies may include a long delay time during which star formation declines slowly, in most cases this must end with a rapid (τ < 1 Gyr) decline in star formation rate. 
    more » « less
  5. Polymers and other glass-forming liquids can exhibit profound alterations in dynamics in the nanoscale vicinity of interfaces, over a range appreciably exceeding that of typical interfacial thermodynamic gradients. The understanding of these dynamical gradients is particularly complicated in systems with internal or external nanoscale dimensions, where a gradient nucleated at one interface can impinge on a second, potentially distinct, interface. To better understand the interactions that govern system dynamics and glass formation in these cases, here we simulate the baseline case of a glass-forming polymer film, over a wide range of thickness, supported on a dynamically neutral substrate that has little effect on nearby dynamics. We compare these results to our prior simulations of freestanding films. Results indicate that dynamical gradients in our simulated systems, as measured based upon translational relaxation, are simply truncated when they impinge on a secondary surface that is locally dynamically neutral. Altered film behavior can be described almost entirely by gradient effects down to the thinnest films probed, with no evidence for finite-size effects sometimes posited to play a role in these systems. Finally, our simulations predict that linear gradient overlap effects in the presence of symmetric dynamically active interfaces yield a non-monotonic variation of the whole free standing film stretching exponent (relaxation time distribution breadth). The maximum relaxation time distribution breadth in simulation is found at a film thickness of 4–5 times the interfacial gradient range. Observation of this maximum in experiment would provide an important validation that the gradient behavior observed in simulation persists to experimental timescales. If validated, observation of this maximum would potentially also enable determination of the dynamic gradient range from experimental mean-film measurements of film dynamics. 
    more » « less