skip to main content


Title: DiffPoseNet: Direct Differentiable Camera Pose Estimation
Current deep neural network approaches for camera pose estimation rely on scene structure for 3D motion estimation, but this decreases the robustness and thereby makes cross-dataset generalization difficult. In contrast, classical approaches to structure from motion estimate 3D motion utilizing optical flow and then compute depth. Their accuracy, however, depends strongly on the quality of the optical flow. To avoid this issue, direct methods have been proposed, which separate 3D motion from depth estimation, but compute 3D motion using only image gradients in the form of normal flow. In this paper, we introduce a network NFlowNet, for normal flow estimation which is used to enforce robust and direct constraints. In particular, normal flow is used to estimate relative camera pose based on the cheirality (depth positivity) constraint. We achieve this by formulating the optimization problem as a differentiable cheirality layer, which allows for end-to-end learning of camera pose. We perform extensive qualitative and quantitative evaluation of the proposed DiffPoseNet’s sensitivity to noise and its generalization across datasets. We compare our approach to existing state-of-the-art methods on KITTI, TartanAir, and TUM-RGBD datasets.  more » « less
Award ID(s):
2020624
NSF-PAR ID:
10376891
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Conference on Computer Vision and Pattern Recognition
ISSN:
2163-6648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recovering multi-person 3D poses and shapes with absolute scales from a single RGB image is a challenging task due to the inherent depth and scale ambiguity from a single view. Current works on 3D pose and shape estimation tend to mainly focus on the estimation of the 3D joint locations relative to the root joint , usually defined as the one closest to the shape centroid, in case of humans defined as the pelvis joint. In this paper, we build upon an existing multi-person 3D mesh predictor network, ROMP, to create Absolute-ROMP. By adding absolute root joint localization in the camera coordinate frame, we are able to estimate multi-person 3D poses and shapes with absolute scales from a single RGB image. Such a single-shot approach allows the system to better learn and reason about the inter-person depth relationship, thus improving multi-person 3D estimation. In addition to this end to end network, we also train a CNN and transformer hybrid network, called TransFocal, to predict the f ocal length of the image’s camera. Absolute-ROMP estimates the 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. We then use TransFocal to obtain focal length and get absolute depth information of all joints in the camera coordinate frame. We evaluate Absolute-ROMP on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets. We evaluate TransFocal on dataset created from the Pano360 dataset and both are applicable to in-the-wild images and videos, due to real time performance. 
    more » « less
  2. Recent volumetric 3D reconstruction methods can produce very accurate results, with plausible geometry even for unobserved surfaces. However, they face an undesirable trade-off when it comes to multi-view fusion. They can fuse all available view information by global averaging, thus losing fine detail, or they can heuristically cluster views for local fusion, thus restricting their ability to consider all views jointly. Our key insight is that greater detail can be retained without restricting view diversity by learning a view-fusion function conditioned on camera pose and image content. We propose to learn this multi-view fusion using a transformer. To this end, we introduce VoRTX, 1 an end-to-end volumetric 3D reconstruction network using transformers for wide-baseline, multi-view feature fusion. Our model is occlusion-aware, leveraging the transformer architecture to predict an initial, projective scene geometry estimate. This estimate is used to avoid back-projecting image features through surfaces into occluded regions. We train our model on ScanNet and show that it produces better reconstructions than state-of-the-art methods. We also demonstrate generalization without any fine-tuning, outperforming the same state-of-the-art methods on two other datasets, TUM-RGBD and ICL-NUIM. 
    more » « less
  3. null (Ed.)
    Monocular estimation of 3d human pose has attracted in- creased attention with the availability of large ground-truth motion capture datasets. However, the diversity of training data available is limited and it is not clear to what extent methods generalize outside the specific datasets they are trained on. In this work we carry out a systematic study of the diversity and biases present in specific datasets and its e↵ect on cross-dataset generalization across a compendium of 5 pose datasets. We specifically focus on systematic di↵erences in the distri- bution of camera viewpoints relative to a body-centered coordinate frame. Based on this observation, we propose an auxiliary task of predicting the camera viewpoint in addition to pose. We find that models trained to jointly predict viewpoint and pose systematically show significantly improved cross-dataset generalization. 
    more » « less
  4. Cardiac Cine Magnetic Resonance (CMR) Imaging has made a significant paradigm shift in medical imaging technology, thanks to its capability of acquiring high spatial and temporal resolution images of different structures within the heart that can be used for reconstructing patient-specific ventricular computational models. In this work, we describe the development of dynamic patient-specific right ventricle (RV) models associated with normal subjects and abnormal RV patients to be subsequently used to assess RV function based on motion and kinematic analysis. We first constructed static RV models using segmentation masks of cardiac chambers generated from our accurate, memory-efficient deep neural architecture - CondenseUNet - featuring both a learned group structure and a regularized weight-pruner to estimate the motion of the right ventricle. In our study, we use a deep learning-based deformable network that takes 3D input volumes and outputs a motion field which is then used to generate isosurface meshes of the cardiac geometry at all cardiac frames by propagating the end-diastole (ED) isosurface mesh using the reconstructed motion field. The proposed model was trained and tested on the Automated Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac MRI patient datasets. The isosurface meshes generated using the proposed pipeline were compared to those obtained using motion propagation via traditional non-rigid registration based on several performance metrics, including Dice score and mean absolute distance (MAD). 
    more » « less
  5. This work proposes a novel pose estimation model for object categories that can be effectively transferred to pre-viously unseen environments. The deep convolutional network models (CNN) for pose estimation are typically trained and evaluated on datasets specifically curated for object detection, pose estimation, or 3D reconstruction, which requires large amounts of training data. In this work, we propose a model for pose estimation that can be trained with small amount of data and is built on the top of generic mid-level represen-tations [33] (e.g. surface normal estimation and re-shading). These representations are trained on a large dataset without requiring pose and object annotations. Later on, the predictions are refined with a small CNN neural network that exploits object masks and silhouette retrieval. The presented approach achieves superior performance on the Pix3D dataset [26] and shows nearly 35 % improvement over the existing models when only 25 % of the training data is available. We show that the approach is favorable when it comes to generalization and transfer to novel environments. Towards this end, we introduce a new pose estimation benchmark for commonly encountered furniture categories on challenging Active Vision Dataset [1] and evaluated the models trained on the Pix3D dataset. 
    more » « less