Scenario‐based model predictive control (MPC) methods can mitigate the conservativeness inherent to open‐loop robust MPC. Yet, the scenarios are often generated offline based on worst‐case uncertainty descriptions obtained
Adaptive Robust Model Predictive Control with Matched and Unmatched Uncertainty
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. Moreover, we apply contemporary statistical estimation techniques to certify the system’s safety through persistent constraint satisfaction with high probability. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods.
more »
« less
- Award ID(s):
- 1931815
- NSF-PAR ID:
- 10377027
- Date Published:
- Journal Name:
- American Control Conference
- Page Range / eLocation ID:
- 906 - 913
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary a priori , which can in turn limit the improvements in the robust control performance. To this end, this paper presents a learning‐based, adaptive‐scenario‐tree model predictive control approach for uncertain nonlinear systems with time‐varying and/or hard‐to‐model dynamics. Bayesian neural networks (BNNs) are used to learn a state‐ and input‐dependent description of model uncertainty, namely the mismatch between a nominal (physics‐based or data‐driven) model of a system and its actual dynamics. We first present a new approach for training robust BNNs (RBNNs) using probabilistic Lipschitz bounds to provide a less conservative uncertainty quantification. Then, we present an approach to evaluate the credible intervals of RBNN predictions and determine the number of samples required for estimating the credible intervals given a credible level. The performance of RBNNs is evaluated with respect to that of standard BNNs and Gaussian process (GP) as a basis of comparison. The RBNN description of plant‐model mismatch with verified accurate credible intervals is employed to generate adaptive scenarios online for scenario‐based MPC (sMPC). The proposed sMPC approach with adaptive scenario tree can improve the robust control performance with respect to sMPC with a fixed, worst‐case scenario tree and with respect to an adaptive‐scenario‐based MPC (asMPC) using GP regression on a cold atmospheric plasma system. Furthermore, closed‐loop simulation results illustrate that robust model uncertainty learning via RBNNs can enhance the probability of constraint satisfaction of asMPC. -
We present a novel technique for solving the problem of safe control for a general class of nonlinear, control-affine systems subject to parametric model uncertainty. Invoking Lyapunov analysis and the notion of fixed-time stability (FxTS), we introduce a parameter adaptation law which guarantees convergence of the estimates of unknown parameters in the system dynamics to their true values within a fixed-time independent of the initial parameter estimation error. We then synthesize the adaptation law with a robust, adaptive control barrier function (RaCBF) based quadratic program to compute safe control inputs despite the considered model uncertainty. To corroborate our results, we undertake a comparative case study on the efficacy of this result versus other recent approaches in the literature to safe control under uncertainty, and close by highlighting the value of our method in the context of an automobile overtake scenario.more » « less
-
This work provides a decentralized approach to safety by combining tools from control barrier functions (CBF) and nonlinear model predictive control (NMPC). It is shown how leveraging backup safety controllers allows for the robust implementation of CBF over the NMPC computation horizon, ensuring safety in nonlinear systems with actuation constraints. A leader-follower approach to control barrier functions (LFCBF) enforcement will be introduced as a strategy to enable a robot leader, in a multi-robot interactions, to complete its task in minimum time, hence aggressively maneuvering. An algorithmic implementation of the proposed solution is provided and safety is verified via simulation.more » « less
-
A hybrid filtered basis function (FBF) approach is proposed in this paper for feedforward tracking control of linear systems with unmodeled nonlinear dynamics. Unlike most available tracking control techniques, the FBF approach is very versatile; it is applicable to any type of linear system, regardless of its underlying dynamics. The FBF approach expresses the control input to a system as a linear combination of basis functions with unknown coefficients. The basis functions are forward filtered through a linear model of the system's dynamics and the unknown coefficients are selected such that tracking error is minimized. The linear models used in existing implementations of the FBF approach are typically physics-based representations of the linear dynamics of a system. The proposed hybrid FBF approach expands the application of the FBF approach to systems with unmodeled nonlinearities by learning from data. A hybrid model is formulated by combining a physics-based model of the system's linear dynamics with a data-driven linear model that approximates the unmodeled nonlinear dynamics. The hybrid model is used online in receding horizon to compute optimal control commands that minimize tracking errors. The proposed hybrid FBF approach is shown in simulations on a model of a vibration-prone 3D printer to improve tracking accuracy by up to 65.4%, compared to an existing FBF approach that does not incorporate data.more » « less
-
Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that model-based controllers transfer to real world systems. This paper develops a data-driven approach to robust control synthesis in the presence of model uncertainty using Control Certificate Functions (CCFs), resulting in a convex optimization based controller for achieving properties like stability and safety. An important benefit of our framework is nuanced data-dependent guarantees, which in principle can yield sample-efficient data collection approaches that need not fully determine the input-to-state relationship. This work serves as a starting point for addressing important questions at the intersection of nonlinear control theory and non-parametric learning, both theoretical and in application. We demonstrate the efficiency of the proposed method with respect to input data in simulation with an inverted pendulum in multiple experimental settings.more » « less