skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitational caustics in an atom laser
Abstract Typically discussed in the context of optics, caustics are envelopes of classical trajectories (rays) where the density of states diverges, resulting in pronounced observable features such as bright points, curves, and extended networks of patterns. Here, we generate caustics in the matter waves of an atom laser, providing a striking experimental example of catastrophe theory applied to atom optics in an accelerated (gravitational) reference frame. We showcase caustics formed by individual attractive and repulsive potentials, and present an example of a network generated by multiple potentials. Exploiting internal atomic states, we demonstrate fluid-flow tracing as another tool of this flexible experimental platform. The effective gravity experienced by the atoms can be tuned with magnetic gradients, forming caustics analogous to those produced by gravitational lensing. From a more applied point of view, atom optics affords perspectives for metrology, atom interferometry, and nanofabrication. Caustics in this context may lead to quantum innovations as they are an inherently robust way of manipulating matter waves.  more » « less
Award ID(s):
1707691 1912540
PAR ID:
10377165
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. De_Stefano, L; Velotta, R; Descrovi, E (Ed.)
    We use spatial light modulation to investigate the diffractive effects of gravitational lensing in the laboratory. Using this new platform for laboratory astrophysics, we can overcome the coherence challenges that prevent the observation of diffraction in astronomical imaging. These studies will inform gravitational lensing of gravitational waves when imaging of gravitational waves becomes available. Our previous work involved studying lensing by a single mass, symmetric and elliptical. This work focuses on the patterns produced by a binary-mass system. We observed rich 2-dimensional interference patterns bounded by caustics. Comparison of experimental results with preliminary theoretical calculations is excellent. 
    more » « less
  2. Abstract Nonlinear light–matter interaction, as the core of ultrafast optics, bulk photovoltaics, nonlinear optical sensing and imaging, and efficient generation of entangled photons, has been traditionally studied by first-principles theoretical methods with the sum-over-states approach. However, this indirect method often suffers from the divergence at band degeneracy and optical zeros as well as convergence issues and high computation costs when summing over the states. Here, using shift vector and shift current conductivity tensor as an example, we present a gauge-invariant generalized approach for efficient and direct calculations of nonlinear optical responses by representing interband Berry curvature, quantum metric, and shift vector in a generalized Wilson loop. This generalized Wilson loop method avoids the above cumbersome challenges and allows for easy implementation and efficient calculations. More importantly, the Wilson loop representation provides a succinct geometric interpretation of nonlinear optical processes and responses based on quantum geometric tensors and quantum geometric potentials and can be readily applied to studying other excited-state responses. 
    more » « less
  3. Abstract The study of light lensed by cosmic matter has yielded much information about astrophysical questions. Observations are explained using geometrical optics following a ray-based description of light. After deflection the lensed light interferes, but observing this diffractive aspect of gravitational lensing has not been possible due to coherency challenges caused by the finite size of the sources or lack of near-perfect alignment. In this article, we report on the observation of these wave effects of gravitational lensing by recreating the lensing conditions in the laboratory via electro-optic deflection of coherent laser light. The lensed light produces a beam containing regularities, caustics, and chromatic modulations of intensity that depend on the symmetry and structure of the lensing object. We were also able to observe previous and new geometric-optical lensing situations that can be compared to astrophysical observations. This platform could be a useful tool for testing numerical/analytical simulations, and for performing analog simulations of lensing situations when they are difficult to obtain otherwise. We found that laboratory lensed beams constitute a new class of beams, with long-range, low expansion, and self-healing properties, opening new possibilities for non-astrophysical applications. 
    more » « less
  4. Abstract Protocols for designing and manipulating qubits with ultracold alkali atoms in 3D optical lattices are introduced. These qubits are formed from two‐atom spin superposition states that create a decoherence‐free subspace immune to stray magnetic fields, dramatically improving coherence times while still enjoying the single‐site addressability and Feshbach resonance control of state‐of‐the‐art alkali atom systems. The protocol requires no continuous driving or spin‐dependent potentials, and instead relies upon the population of a higher motional band to realize naturally tunable in‐site exchange and cross‐site superexchange interactions. As a proof‐of‐principle example of their utility for entanglement generation for quantum computation, it is shown that the cross‐site superexchange interactions can be used to engineer 1D cluster states. Explicit protocols for experimental preparation and manipulation of the qubits are also discussed, as well as methods for measuring more complex quantities such as out‐of‐time‐ordered correlation functions (OTOCs). 
    more » « less
  5. Abstract A discrete degree of freedom can be engineered to match the Hamiltonian of particles moving in a real-space lattice potential. Such synthetic dimensions are powerful tools for quantum simulation because of the control they offer and the ability to create configurations difficult to access in real space. Here, in an ultracold 84 Sr atom, we demonstrate a synthetic-dimension based on Rydberg levels coupled with millimeter waves. Tunneling amplitudes between synthetic lattice sites and on-site potentials are set by the millimeter-wave amplitudes and detunings respectively. Alternating weak and strong tunneling in a one-dimensional configuration realizes the single-particle Su-Schrieffer-Heeger (SSH) Hamiltonian, a paradigmatic model of topological matter. Band structure is probed through optical excitation from the ground state to Rydberg levels, revealing symmetry-protected topological edge states at zero energy. Edge-state energies are robust to perturbations of tunneling-rates that preserve chiral symmetry, but can be shifted by the introduction of on-site potentials. 
    more » « less