skip to main content


Title: Generalized Wilson loop method for nonlinear light-matter interaction
Abstract

Nonlinear light–matter interaction, as the core of ultrafast optics, bulk photovoltaics, nonlinear optical sensing and imaging, and efficient generation of entangled photons, has been traditionally studied by first-principles theoretical methods with the sum-over-states approach. However, this indirect method often suffers from the divergence at band degeneracy and optical zeros as well as convergence issues and high computation costs when summing over the states. Here, using shift vector and shift current conductivity tensor as an example, we present a gauge-invariant generalized approach for efficient and direct calculations of nonlinear optical responses by representing interband Berry curvature, quantum metric, and shift vector in a generalized Wilson loop. This generalized Wilson loop method avoids the above cumbersome challenges and allows for easy implementation and efficient calculations. More importantly, the Wilson loop representation provides a succinct geometric interpretation of nonlinear optical processes and responses based on quantum geometric tensors and quantum geometric potentials and can be readily applied to studying other excited-state responses.

 
more » « less
Award ID(s):
2103842 1753054
NSF-PAR ID:
10367917
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Materials
Volume:
7
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantum states can acquire a geometric phase called the Berry phase after adiabatically traversing a closed loop, which depends on the path not the rate of motion. The Berry phase is analogous to the Aharonov–Bohm phase derived from the electromagnetic vector potential, and can be expressed in terms of an Abelian gauge potential called the Berry connection. Wilczek and Zee extended this concept to include non-Abelian phases—characterized by the gauge-independent Wilson loop—resulting from non-Abelian gauge potentials. Using an atomic Bose–Einstein condensate, we quantum-engineered a non-Abelian SU(2) gauge field, generated by a Yang monopole located at the origin of a 5-dimensional parameter space. By slowly encircling the monopole, we characterized the Wilczek–Zee phase in terms of the Wilson loop, that depended on the solid-angle subtended by the encircling path: a generalization of Stokes’ theorem. This observation marks the observation of the Wilson loop resulting from a non-Abelian point source.

     
    more » « less
  2. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
    more » « less
  3. Abstract

    Nonlinear photocurrent in time-reversal invariant noncentrosymmetric systems such as ferroelectric semimetals sparked tremendous interest of utilizing nonlinear optics to characterize condensed matter with exotic phases. Here we provide a microscopic theory of two types of second-order nonlinear direct photocurrents, magnetic shift photocurrent (MSC) and magnetic injection photocurrent (MIC), as the counterparts of normal shift current (NSC) and normal injection current (NIC) in time-reversal symmetry and inversion symmetry broken systems. We show that MSC is mainly governed by shift vector and interband Berry curvature, and MIC is dominated by absorption strength and asymmetry of the group velocity difference at time-reversed ±kpoints. Taking$${\cal{P}}{\cal{T}}$$PT-symmetric magnetic topological quantum material bilayer antiferromagnetic (AFM) MnBi2Te4as an example, we predict the presence of large MIC in the terahertz (THz) frequency regime which can be switched between two AFM states with time-reversed spin orderings upon magnetic transition. In addition, external electric field breaks$${\cal{P}}{\cal{T}}$$PTsymmetry and enables large NSC response in bilayer AFM MnBi2Te4, which can be switched by external electric field. Remarkably, both MIC and NSC are highly tunable under varying electric field due to the field-induced large Rashba and Zeeman splitting, resulting in large nonlinear photocurrent response down to a few THz regime, suggesting bilayer AFM-zMnBi2Te4as a tunable platform with rich THz and magneto-optoelectronic applications. Our results reveal that nonlinear photocurrent responses governed by NSC, NIC, MSC, and MIC provide a powerful tool for deciphering magnetic structures and interactions which could be particularly fruitful for probing and understanding magnetic topological quantum materials.

     
    more » « less
  4. Abstract

    The complex coupled short‐pulse equation (ccSPE) describes the propagation of ultrashort optical pulses in nonlinear birefringent fibers. The system admits a variety of vector soliton solutions: fundamental solitons, fundamental breathers, composite breathers (generic or nongeneric), as well as so‐called self‐symmetric composite solitons. In this work, we use the dressing method and the Darboux matrices corresponding to the various types of solitons to investigate soliton interactions in the focusing ccSPE. The study combines refactorization problems on generators of certain rational loop groups, and long‐time asymptotics of these generators, as well as the main refactorization theorem for the dressing factors that leads to the Yang–Baxter property for the refactorization map and the vector soliton interactions. Among the results obtained in this paper, we derive explicit formulas for the polarization shift of fundamental solitons that are the analog of the well‐known formulas for the interaction of vector solitons in the Manakov system. Our study also reveals that upon interacting with a fundamental breather, a fundamental soliton becomes a fundamental breather and, conversely, that the interaction of two fundamental breathers generically yields two fundamental breathers with a polarization shifts, but may also result into a fundamental soliton and a fundamental breather. Explicit formulas for the coefficients that characterize the fundamental breathers, as well as for their polarization vectors are obtained. The interactions of other types of solitons are also derived and discussed in detail and illustrated with plots. New Yang–Baxter maps are obtained in the process.

     
    more » « less
  5. We investigate the behavior of higher-form symmetries at variousquantum phase transitions. We consider discrete 1-form symmetries, whichcan be either part of the generalized concept “categorical symmetry”(labelled as \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) )introduced recently, or an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. We demonstrate that for many quantum phase transitionsinvolving a Z_N^{(1)} Z N ( 1 ) or \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) symmetry, the following expectation value \langle \left( O_\mathcal{C}\right)^2 \rangle ⟨ ( O 𝒞 ) 2 ⟩ takes the form \langle \left( \log O_\mathcal{C} \right)^2 \rangle \sim - \frac{A}{\epsilon} P + b \log P ⟨ ( log O 𝒞 ) 2 ⟩ ∼ − A ϵ P + b log P , where O_\mathcal{C} O 𝒞 is an operator defined associated with loop \mathcal{C} 𝒞 (or its interior \mathcal{A} 𝒜 ),which reduces to the Wilson loop operator for cases with an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. P P is the perimeter of \mathcal{C} 𝒞 ,and the b \log P b log P term arises from the sharp corners of the loop \mathcal{C} 𝒞 ,which is consistent with recent numerics on a particular example. b b is a universal microscopic-independent number, which in (2+1)d ( 2 + 1 ) d is related to the universal conductivity at the quantum phasetransition. b b can be computed exactly for certain transitions using the dualitiesbetween (2+1)d ( 2 + 1 ) d conformal field theories developed in recent years. We also compute the"strange correlator" of O_\mathcal{C} O 𝒞 : S_{\mathcal{C}} = \langle 0 | O_\mathcal{C} | 1 \rangle / \langle 0 | 1 \rangle S 𝒞 = ⟨ 0 | O 𝒞 | 1 ⟩ / ⟨ 0 | 1 ⟩ where |0\rangle | 0 ⟩ and |1\rangle | 1 ⟩ are many-body states with different topological nature. 
    more » « less