We report the pulsed‐laser deposition of epitaxial double‐perovskite Bi2FeCrO6(BFCO) films on the (001)‐, (110), and (111)‐oriented single‐crystal SrTiO3substrates. All of the BFCO films with various orientations show the
Vertically aligned carbon nanofibers (VACNFs) are promising supports for oxygen reduction reaction (ORR) electrocatalysts in fuel cells. Although experimentally these catalytic systems have shown great potential, there is lack of molecular understanding of the catalytic sites and reaction mechanisms. This work investigated the origin of the ORR reactivities of the platinum catalysts on multi‐edged VACNFs (Pt/VACNF) using a multiscale modeling approach combining Density Functional Theory (DFT) and classical Molecular Dynamics (MD) simulations. Based on the ReaxFF potential, all nanoscale Pt particles (Pt55, P100, and Pt147) are stabilized by the open edges located axially along the VACNF walls. The calculated first‐shell coordination numbers,
- Award ID(s):
- 1703263
- PAR ID:
- 10377174
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemElectroChem
- Volume:
- 9
- Issue:
- 20
- ISSN:
- 2196-0216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract and superlattice‐diffraction peaks. The intensity ratios between the ‐superlattice and the main 111‐diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with the B ‐site Fe3+/Cr3+cation ordering. Instead, the epitaxial (111)‐oriented Bi2FeCrO6films show an enhanced remanent polarization of 92 μC/cm2at 10 K, much larger than the predicted values by density‐functional theory calculations. Positive‐up‐negative‐down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come fromA ‐ orB ‐site cation shifts along the pseudo‐cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films. -
Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple system
on vertices and any 3‐uniform hypertree on vertices, is it necessary that contains as a subgraph provided ? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. -
Abstract We prove that a WLD subspace of the space
consisting of all bounded, countably supported functions on a set Γ embeds isomorphically into if and only if it does not contain isometric copies of . Moreover, a subspace of is constructed that has an unconditional basis, does not embed into , and whose every weakly compact subset is separable (in particular, it cannot contain any isomorphic copies of ). -
Abstract A graph
G is said to be 2‐divisible if for all (nonempty) induced subgraphsH ofG ,can be partitioned into two sets such that and . (Here denotes the clique number of G , the number of vertices in a largest clique ofG ). A graphG is said to be perfectly divisible if for all induced subgraphsH ofG ,can be partitioned into two sets such that is perfect and . We prove that if a graph is ‐free, then it is 2‐divisible. We also prove that if a graph is bull‐free and either odd‐hole‐free or P 5‐free, then it is perfectly divisible. -
Abstract We present the average distribution of energetic electrons in Jupiter's plasma sheet and outer radiation belt near the magnetic equator during Juno's first 29 orbits. Juno observed a clear decrease of magnetic field amplitude and enhancement of energetic electron fluxes over 0.1–1,000 keV energies when traveling through the plasma sheet. In the radiation belts, Juno observed pancake‐shaped electron distributions with high fluxes at ∼90° pitch angle and whistler‐mode waves. Our survey indicates that the statistical electron flux at each energy tends to increase from
to . The equatorial pitch angle distributions are isotropic or field‐aligned in the plasma sheet and gradually become pancake‐shaped at . The electron phase space density gradients at MeV/G are relatively small at and become positive over , suggesting the dominant role of adiabatic radial transport at higher shells, and the possible loss processes at lower shells.