Abstract As the abyssal oceans warm, stratification is also expected to change in response. This change may impact mixing and vertical transport by altering the buoyancy flux, internal wave generation, and turbulent dissipation. In this study, repeated surveys of three hydrographic sections in the Southwest Pacific Basin between the 1990s and 2010s are used to estimate the change in buoyancy frequency. We find that below the°C isotherm,is on average reduced by a scaling factor of, a 12% reduction, per decade that intensifies with depth. At°C, we observe the biggest change:, or a 29% reduction per decade. Within the same period, the magnitude of vertical diffusive heat flux is also reduced by about, although this estimate is sensitive to the choice of estimated diffusivity. Finally, implications of these results for the heat budget and global ocean circulation are qualitatively discussed.
more »
« less
Influence of Thermal Stratification on the Structure and Evolution of the Martian Core
Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s.
more »
« less
- Award ID(s):
- 2152686
- PAR ID:
- 10366584
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 22
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive.more » « less
-
Abstract Nitrification, the microbial conversion of ammonium to nitrite then to nitrate, occurs throughout the oceanic water column, yet the environmental factors influencing the production of nitrate in the euphotic zone (EZ) remain unclear. In this study, the natural abundances of N and O isotopes (δ15N and δ18O, respectively) in nitrate were used in an existing model framework to quantify nitrate contributed by EZ nitrification in the California Current Ecosystem (CCE) during two anomalously warm years. Model data estimated that between 6% and 36% of the EZ nitrate reservoirs were derived from the combined steps of nitrification within the EZ. The CCE data set found nitrification contributions to EZ nitrate to be positively correlated with nitrite concentrations () at the depth of the primary nitrite maximum (PNM). Building on this correlation, EZ nitrification in the southern California Current was estimated to contribute on average 20% ± 6% to EZ nitrate as inferred using the PNMof the long‐term California Cooperative Oceanic Fisheries Investigation (CalCOFI) survey record. A multiple linear regression analysis of the CalCOFI PNMtime series identified two conditions that led to positive deviations in. Enhanced PNM, and potentially enhanced EZ nitrification, may be linked to (1) reduced phytoplankton competition for ammonium () andas interpreted from particulate organic carbon:chlorophyll ratios, and/or (2) to increased supply of(and thenoxidation to) from the degradation of organic nitrogen as interpreted from particulate organic nitrogen concentrations.more » « less
-
Abstract Terrestrial lightning frequently serves as a loss mechanism for energetic electrons in the Van Allen radiation belts, leading to lightning‐induced electron precipitation (LEP). Regardless of the specific causes, energetic electron precipitation from the radiation belts in general has a significant influence on the ozone concentration in the stratosphere and mesosphere. The atmospheric chemical effects induced by LEP have been previously investigated using subionospheric VLF measurements at Faraday station, Antarctica (65.25°S, 64.27°W,L= 2.45). However, there exist large variations in the precipitation flux, ionization production, and occurrence rate of LEP events depending on the peak current of the parent lightning discharge, as well as the season, location, and intensity of the thunderstorm activity. These uncertainties motivate us to revisit the calculation of atmospheric chemical changes produced by LEP. In this study, we combine a well‐validated LEP model and first‐principles atmospheric chemical simulation, and investigate three intense storms in the year of 2013, 2015, and 2017 at the magnetic latitude of 50., 32., and 35., respectively. Modeling results show that the LEP events in these storms can cumulatively drive significant changes in the,, andconcentration in the mesosphere. These changes are as high as,, andat 75–85 km altitude, respectively, and comparable to the effects typically induced by other types of radiation belt electron precipitation events. Considering the high occurrence rate of thunderstorms around the globe, the long‐term global chemical effects produced by LEP events need to be properly quantified.more » « less
-
Abstract Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd anddistributions. We use the Cd andclimatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and. Our calculations reveal that dissolved Cd, like, is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd andinto sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd andIn particular, thesurface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative toin the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper thanin the subsurface ocean, and theregeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in therelationship and should be considered when interpreting paleoceanographic Cd records.more » « less
An official website of the United States government
