skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sharing Experiences in Designing Professional Learning to Support Hydrology and Water Resources Instructors to Create High-Quality Curricular Materials
The creation of high-quality curricular materials requires knowledge of curriculum design and a considerable time commitment. Instructors often have limited time to dedicate to the creation of curricular materials. Additionally, the knowledge and skills needed to develop high-quality materials are often not taught to instructors. Furthermore, similar learning material is often prepared by multiple instructors working at separate institutions, leading to unnecessary duplication of effort and inefficiency that can impact quality. To address these problems, we established the HydroLearn platform and associated professional learning experiences for hydrology and water resources instructors. HydroLearn is an online platform for developing and sharing high-quality curricular materials, or learning modules, focused on hydrology and water resources. The HydroLearn team has worked with three cohorts of instructors from around the world who were dedicated to creating high-quality curricular materials to support both their students and the broader community. In order to overcome some of the aforementioned barriers, we tested and revised several different models of professional learning with these cohorts. These models ranged from (a) instructors working individually with periodic guidance from the HydroLearn team, to (b) small groups of instructors collaborating on topics of shared interests guided through an intensive HydroLearn training workshop. We found the following factors to contribute to the success of instructors in creating modules: (1) instructor pairs co-creating modules enhanced the usability and transferability of modules between universities and courses, (2) dedicating an intensive block of time (∼63 h over 9 days) to both learning about and implementing curriculum design principles, (3) implementing structures for continuous feedback throughout that time, (4) designing modules for use in one’s own course, and (5) instituting a peer-review process to refine modules. A comprehensive set of learning modules were produced covering a wide range of topics that target undergraduate and early graduate students, such as: floodplain analysis, hydrologic droughts, remote sensing applications in hydrology, urbanization and stormwater runoff, evapotranspiration, snow and climate, groundwater flow, saltwater intrusion in coastal regions, and stream solute tracers. We share specifics regarding how we structured the professional learning models, as well as lessons learned and challenges faced.  more » « less
Award ID(s):
1726965 1725989 1726667
PAR ID:
10377208
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Education
Volume:
7
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The need to adapt quickly to online or remote instruction has been a challenge for instructors during the COVID pandemic. A common issue instructors face is finding high-quality curricular materials that can enhance student learning by engaging them in solving complex, real-world problems. The current study evaluates a set of 15 web-based learning modules that promote the use of authentic, high-cognitive demand tasks. The modules were developed collaboratively by a group of instructors during a HydroLearn hackathon-workshop program. The modules cover various topics in hydrology and water resources, including physical hydrology, hydraulics, climate change, groundwater flow and quality, fluid mechanics, open channel flow, remote sensing, frequency analysis, data science, and evapotranspiration. The study evaluates the impact of the modules on students’ learning in terms of two primary aspects: understanding of fundamental concepts and improving technical skills. The study uses a practical instrument to measure students’ perceived changes in concepts and technical skills known as the Student Assessment of Learning Gains (SALG) survey. The survey was used at two-time points in this study: before the students participated in the module (pre) and at the conclusion of the module (post). The surveys were modified to capture the concepts and skills aligned with the learning objectives of each module. We calculated the learning gains by examining differences in students’ self-reported understanding of concepts and skills from pre- to post-implementation on the SALG using paired samples t -tests. The majority of the findings were statistically at the 0.05 level and practically significant. As measured by effect size, practical significance is a means for identifying the strength of the conclusions about a group of differences or the relationship between variables in a study. The average effect size in educational research is d = 0.4. The effect sizes from this study [0.45, 1.54] suggest that the modules play an important role in supporting students’ gains in conceptual understanding and technical skills. The evidence from this study suggests that these learning modules can be a promising way to deliver complex subjects to students in a timely and effective manner. 
    more » « less
  2. Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the curriculum of a new, high school computer science course under development called Computer Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles course, we seek to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on curriculum provides an engaging introduction to these advanced topics in high school because currently they are accessible only to CS majors in college. It also focuses on other 21st century skills required to productively leverage computational methods and tools in virtually every profession. To address the dire gender disparity in computing, the curriculum was designed to engage female students by focusing on real world application domains, such as climate change and health, by including social applications and by emphasizing collaboration and teamwork. Our paper describes the design of curricular modules on Distributed Computing, IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be collaborative, situated in contexts that are engaging to high school students, and often involve real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD workshops as well as student camps indicate high levels of engagement in and enthusiasm for the curricular activities and topics. Post-intervention surveys suggest that these experiences generate student interest exploring these ideas further and connections to areas of interest to students. 
    more » « less
  3. Manufacturing makes tremendous contributions to the economy as it increases gross domestic product and exports, creates high-paying jobs, generates meaningful return on investment, and supports many other sectors. The future of manufacturing depends on preparing younger generations for innovation and skill-intensive jobs through Science, Technology, Engineering, and Math (STEM) programs. However, there is a dearth of manufacturing presence in the current curricular content as most STEM high school and community college educators do not have training in manufacturing concepts and likely have not worked in the modern manufacturing industry. An effective way of bringing manufacturing to the curriculum is to include simulation and automation hands-on experimentation. This paper presents the second year of an ongoing Research Experiences for Teachers (RET) Site in Manufacturing Simulation and Automation. The objectives of the program are to 1) improve instructors’ research and professional skills, and 2) help them translate the cutting-edge manufacturing research to their classrooms by creating and implementing new curricula. This will stimulate students’ interest in the topic and strengthen manufacturing education. 
    more » « less
  4. The NSF/IEEE-TCPP Parallel and Distributed Computing curriculum guidelines released in 2012 (PDC12) is an effort to bring more parallel computing education to early computer science courses. It has been moderately successful, with the inclusion of some PDC topics in the ACM/IEEE Computer Science curriculum guidelines in 2013 (CS13) and some coverage of topics in early CS courses in some universities in the U.S. and around the world. A reason often cited for the lack of a broader adoption is the difficulty for instructors who are not already knowledgable in PDC topics to learn how to teach those topics and align their learning objectives with early CS courses. There have been attempts at bringing textbook chapters, lecture slides, assignments, and demos to the hands of the instructors of early CS classes. However, the effort required to plow through all the available materials and figure out what is relevant to a particular class is daunting. This paper argues that classifying pedagogical materials against the CS13 guidelines and the PDC12 guidelines can provide the means necessary to reduce the burden of adoption for instructors. In this paper, we present CAR-CS, a system that can be used to categorize pedagogical materials according to well- known and established curricular guidelines and show that CAR-CS can be leveraged 1) by PDC experts to identify topics for which pedagogical material does not exist and that should be developed, 2) by instructors of early CS courses to find materials that are similar to the one that they use but that also cover PDC topics, 3) by instructors to check the topics that a course currently covers and those it does not cover. 
    more » « less
  5. NA (Ed.)
    Teacher leadership and agency can provide time sensitive, trusted information during times of uncertainty. A Native Hawaiian teacher’s place and culture-based COVID-19 lessons inspired a multidisciplinary team funded by NSF and NIH to develop four place-based, culturally responsive COVID-19 curricular modules. Educator-led outreach via in-person and online presentations was coupled with a project website that provided K-12 educators with independent learning to support teaching of COVID-19 in the contexts of: 1) historical epidemics in Hawai’i, 2) student inquiry into family health, 3) protection and prevention, and 4) vaccines, variants, and disinformation. Major findings include high ratings from Native Hawaiian and Pacific Islander educators, increased downloads of modules following outreach, selection of Module I History of Infectious Diseases in Hawaiʻi and the Pacific as most valuable, and high engagement of elementary teachers. Teachers were most concerned about students mental health and disinformation. Those who taught the curriculum gave higher rating to leadership and governance in their schools and communities and were most interested in professional development as public health educators. Findings suggest that place-, culture-, and inquiry-based curriculum and professional development situated in students’ lives and communities has the potential to support teachers as public health leaders and communicators during times of change and uncertainty. 
    more » « less