skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demonstration of a portable system for daytime optical turbulence profile measurements
ABSTRACT Measurements of the optical turbulence profile are critical for selecting a potential new solar observational site or for characterizing an existing solar observatory. To measure the turbulence distribution to a moderate altitude above an existing observatory, current techniques use a large facility telescope with an aperture size larger than 1.0 m. This limits their application, especially in surveys to find a new potential site where no large facility telescope is available and where a portable measurement device is needed for such measurements. To address the above issues, we propose a new technique, termed the Advanced Multiple Aperture Seeing Profiler (A-MASP), which uses solar granulation to measure the daytime optical turbulence profile. The A-MASP is a portable system and thus can fully address the fundamental limitation of current optical turbulence profile measurement techniques. The A-MASP consists of two small telescopes, each with an aperture of the order of 100 mm, which can measure the turbulence profile to an altitude up to 20 km. Here, we present our A-MASP development work and its initial on-site measurements at the Big Bear Solar Observatory. In a proof-of-concept experiment, it was successfully demonstrated that the A-MASP can reliably measure the turbulence profile up to 12 km with a vector separation of 0.7 m between the two telescopes. The A-MASP could be used for future surveys to find potentially good observational sites.  more » « less
Award ID(s):
1821294
PAR ID:
10377244
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3303-3311
Size(s):
p. 3303-3311
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite their somewhat frequent appearance in extreme-ultraviolet (EUV) imaging of off-limb flares, the origins of supra-arcade downflows (SADs) remain a mystery. Appearing as dark, tendril-like downflows above growing flare loop arcades, SADs themselves are yet to be tied into the standard model of solar flares. The uncertainty of their origin is, in part, due to a lack of spectral observations, with the last published SAD spectral observations dating back to the Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation era in 2003. In this work, we present new observations of SADs within an M-class solar flare on 2022 April 2, observed by the Hinode EUV Imaging Spectrometer (EIS) and the NASA Solar Dynamics Observatory. We measure FeXXIV192.02 Å Doppler downflows and nonthermal velocities in the low-intensity SAD features, exceeding values measured in the surrounding flare fan. The ratio of temperature-sensitive FeXXIV255.11 Å and FeXXIII263.41 Å lines also allows the measurement of electron temperature, revealing temperatures within the range of the surrounding flare fan. We compare EIS line-of-sight Doppler velocities with plane-of-sky velocities measured by Atmospheric Imaging Assembly, to construct the 3D velocity profile of four prominent SADs, finding evidence for their divergence above the flare loop arcade—possibly related to the presence of a high-altitude termination shock. Finally, we detect “stealth” SADs, which produce SAD-like Doppler signals, yet with no change in intensity. 
    more » « less
  2. A modern implementation of a stellar intensity interferometry (SII) system on an array of large optical telescopes would be a highly valuable complement to the current generation of optical amplitude interferometers. The SII technique allows for observations at short optical wavelengths (U/B/V bands) with potentially dense (u,v) plane coverage. We describe a complete SII system that is used to measure the spatial coherence of a laboratory source which exhibits signal to noise ratios comparable to actual stellar sources. A novel analysis method, based on the correlation measurements between orthogonal polarization states, was developed to remove unwanted effects of spurious correlations. Our system is currently being tested in night sky observations at the StarBase Observatory (Grantsville, Utah) and will soon be ported to the VERITAS (Amado, AZ) telescopes. The system can readily be integrated with current optical telescopes at minimal cost. The work here serves as a technological pathfinder for implementing SII on the future Cherenkov Telescope Array. 
    more » « less
  3. Abstract. Bromine monoxide (BrO) is relevant to atmospheric oxidative capacity, affecting the lifetime of greenhouse gases (i.e., methane, dimethylsulfide) and mercury oxidation. However, measurements of BrO radical vertical profiles are rare, and BrO is highly variable. As a result, the few available aircraft observations in different regions of the atmosphere are not easily reconciled. Autonomous multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments placed at remote mountaintop observatories (MT-DOAS) present a cost-effective alternative to aircraft, with the potential to probe the climate-relevant yet understudied free troposphere more routinely. Here, we describe an innovative full-atmosphere BrO and formaldehyde (HCHO) profile retrieval algorithm using MT-DOAS measurements at Mauna Loa Observatory (MLO – 19.536° N, 155.577° W; 3401 m a.s.l.). The retrieval is based on time-dependent optimal estimation and simultaneously inverts 190+ individual BrO (and formaldehyde, HCHO) SCDs (slant column densities; SCD = dSCD + SCDRef) from solar stray light spectra measured in the zenith and off-axis geometries at high and low solar zenith angles (92° > SZA > 30°) to derive BrO concentration profiles from 1.9 to 35 km with 7.5 degrees of freedom (DoFs). Two case study days are characterized by the absence (26 April 2017, base case) and presence of a Rossby-wave-breaking double tropopause (29 April 2017, RW-DT case). Stratospheric-BrO vertical columns are nearly identical on both days (VCD = (1.5 ± 0.2) × 1013 molec. cm−2), and the stratospheric-BrO profile peaks at a lower altitude during the RW-DT (1.6–2.0 DoFs). Tropospheric-BrO VCDs increase from (0.70 ± 0.14) × 1013 molec. cm−2 (base case) to (1.00 ± 0.14) × 1013 molec. cm−2 (RW-DT) owing to a 3-fold increase in BrO in the upper troposphere (1.7–1.9 DoFs). BrO at MLO increases from (0.23 ± 0.03) pptv (base case) to (0.46 ± 0.03) pptv (RW-DT) and is characterized by an added time resolution (∼ 3.8 DoFs). Up to (0.9 ± 0.1) pptv BrO is observed above MLO in the lower free troposphere in the absence of the double tropopause. We validate the retrieval using aircraft BrO profiles and in situ HCHO measurements aboard the NSF/NCAR GV aircraft above MLO (11 January 2014) that establish BrO peaks around 2.4 pptv above 13 km in the upper troposphere–lower stratosphere (UTLS) during a similar RW-DT event (0.83 × 1013 molec. cm2 tropospheric-BrO VCD above 2 km). The tropospheric-BrO profile measured using MT-DOAS (RW-DT case) and using the aircraft agree well (after averaging-kernel smoothing). Furthermore, these tropospheric-BrO profiles over the central Pacific Ocean are found to closely resemble those over the eastern Pacific Ocean (2–14 km) and are in contrast to those over the western Pacific Ocean, where a C-shaped tropospheric-BrO profile shape has been observed. 
    more » « less
  4. Solar Dynamics Observatory (SDO) spacecraft as a space-based project is able to conduct continuous monitoring of the Sun. The Helioseismic and Magnetic Imager (HMI) instrument on SDO, in particular, provides continuum images and magnetograms with a cadence of under 1 minute. SDO/HMI's spatial resolution is only about 1'', which makes it impossible to perform a good analysis on the subarcsecond scale. On the other hand, larger aperture ground-based telescopes such as the Goode Solar Telescope (GST) at the Big Bear Solar Observatory are able to achieve a better resolution (16 times better than SDO/HMI). However, ground-based telescopes like GST have limitations in terms of observation time, which can only make observations during the day in clearsky condition. The purpose of this study is to make attempts in improving the spatial resolution of images captured by HMI beyond the diffraction limit of the telescope by employing the Conditional Generative Adversarial Networks algorithm (cGAN). The cGAN model was trained using 1800 pairs of HMI and GST sunspot images. This method successfully reconstruct HMI images with a spatial resolution close to GST images, this is supported by \raisebox{-0.5ex}\textasciitilde62\% increase in the peak signal-to-noise ratio (PSNR) value and \raisebox{-0.5ex}\textasciitilde90\% decrease in the mean squared error (MSE) value. The higher resolution sunspot images produced by this model can be useful for further Solar Physics studies. 
    more » « less
  5. null (Ed.)
    IceAct is a proposed surface array of compact (50 cm diameter) and cost-effective Imaging Air Cherenkov Telescopes installed at the site of the IceCube Neutrino Observatory at the geographic South Pole. Since January 2019, two IceAct telescope demonstrators, featuring 61 silicon pho- tomultiplier (SiPM) pixels have been taking data in the center of the IceTop surface array during the austral winter. We present the first analysis of hybrid cosmic ray events detected by the IceAct imaging air-Cherenkov telescopes in coincidence with the IceCube Neutrino Observatory, includ- ing the IceTop surface array and the IceCube in-ice array. By featuring an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of im- proving current cosmic ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors, enabling significantly better primary particle type discrimination on a statistical basis. The hybrid measurement also allows for detailed feasibility studies of detector cross-calibration and of cosmic ray veto capabilities for neutrino analyses. We present the performance of the telescopes, the results from the analysis of two years of data, and an outlook of a hybrid simulation for a future telescope array. 
    more » « less