skip to main content


Title: Investigating the Roles of External Forcing and Ocean Circulation on the Atlantic Multidecadal SST Variability in a Large Ensemble Climate Model Hierarchy
Abstract This paper attempts to enhance our understanding of the causes of Atlantic Multidecadal Variability, the AMV. Following the literature, we define the AMV as the SST averaged over the North Atlantic basin, linearly detrended and low-pass filtered. There is an ongoing debate about the drivers of the AMV, which include internal variability generated from the ocean or atmosphere (or both), and external radiative forcing. We test the role of these factors in explaining the time history, variance, and spatial pattern of the AMV using a 41-member ensemble from a fully coupled version of CESM and a 10-member ensemble of the CESM atmosphere coupled to a slab ocean. The large ensemble allows us to isolate the role of external forcing versus internal variability, and the model differences allow us to isolate the role of coupled ocean circulation. Both with and without coupled ocean circulation, external forcing explains more than half of the variance of the observed AMV time series, indicating its important role in simulating the 20 th century AMV phases. In this model the net effect of ocean processes is to reduce the variance of the AMV. Dynamical ocean coupling also reduces the ability of the model to simulate the characteristic spatial pattern of the AMV, but forcing has little impact on the pattern. Historical forcing improves the time history and variance of the AMV simulation, whilst the more realistic ocean representation reduces the variance below that observed and lowers the correlation with observations.  more » « less
Award ID(s):
1735245 1703076
NSF-PAR ID:
10377292
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Page Range / eLocation ID:
1 to 51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Atlantic multidecadal variability (AMV) impacts temperature, precipitation, and extreme events on both sides of the Atlantic Ocean basin. Previous studies with climate models have suggested that when external radiative forcing is held constant, the large-scale ocean and atmosphere circulation are associated with sea surface temperature (SST) anomalies that have similar characteristics to the observed AMV. However, there is an active debate as to whether these internal fluctuations driven by coupled atmosphere–ocean variability remain influential to the AMV on multidecadal time scales in our modern, anthropogenically forced climate. Here we provide evidence from multiple large ensembles of climate models, paleoreconstructions, and instrumental observations of a growing role for external forcing in the AMV. Prior to 1850, external forcing, primarily from volcanoes, explains about one-third of AMV variance. Between 1850 and 1950, there is a transitional period, where external forcing explains one-half of AMV variance, but volcanic forcing only accounts for about 10% of that. After 1950, external forcing explains three-quarters of AMV variance. That is, the role for external forcing in the AMV grows as the variations in external forcing grow, even if the forcing is from different sources. When forcing is relatively stable, as in earlier modeling studies, a higher percentage of AMV variations are internally generated.

     
    more » « less
  2. Abstract

    The sea surface temperature (SST) signature of Atlantic multidecadal variability (AMV) is a key driver of climate variability in surrounding regions. Low-frequency Atlantic meridional overturning circulation (AMOC) variability is often invoked as a key driving mechanism of AMV-related SST anomalies. However, the origins of both AMV and multidecadal AMOC variability remain areas of active research and debate. Here, using coupled ensemble experiments designed to isolate the climate response to buoyancy forcing associated with the North Atlantic Oscillation in the Labrador Sea, we show that ocean dynamical changes are the essential drivers of AMV and related climate impacts. Atmospheric teleconnections also play an important role in rendering the full AMV pattern by transmitting the ocean-driven subpolar SST signal into the rest of the basin, including the tropical North Atlantic. As such, the atmosphere response to the tropical AMV in our experiments is limited to a relatively small area in the Atlantic sector in summertime, suggesting that it could be overestimated in widely adopted protocols for AMV pacemaker experiments.

     
    more » « less
  3. Abstract

    This study investigates the stratospheric response to Arctic sea ice loss and subsequent near-surface impacts by analyzing 200-member coupled experiments using the Whole Atmosphere Community Climate Model version 6 (WACCM6) with preindustrial, present-day, and future sea ice conditions specified following the protocol of the Polar Amplification Model Intercomparison Project. The stratospheric polar vortex weakens significantly in response to the prescribed sea ice loss, with a larger response to greater ice loss (i.e., future minus preindustrial) than to smaller ice loss (i.e., future minus present-day). Following the weakening of the stratospheric circulation in early boreal winter, the coupled stratosphere–troposphere response to ice loss strengthens in late winter and early spring, projecting onto a negative North Atlantic Oscillation–like pattern in the lower troposphere. To investigate whether the stratospheric response to sea ice loss and subsequent surface impacts depend on the background oceanic state, ensemble members are initialized by a combination of varying phases of Atlantic multidecadal variability (AMV) and interdecadal Pacific variability (IPV). Different AMV and IPV states combined, indeed, can modulate the stratosphere–troposphere responses to sea ice loss, particularly in the North Atlantic sector. Similar experiments with another climate model show that, although strong sea ice forcing also leads to tighter stratosphere–troposphere coupling than weak sea ice forcing, the timing of the response differs from that in WACCM6. Our findings suggest that Arctic sea ice loss can affect the stratospheric circulation and subsequent tropospheric variability on seasonal time scales, but modulation by the background oceanic state and model dependence need to be taken into account.

    Significance Statement

    This study uses new-generation climate models to better understand the impacts of Arctic sea ice loss on the surface climate in the midlatitudes, including North America, Europe, and Siberia. We focus on the stratosphere–troposphere pathway, which involves the weakening of stratospheric winds and its downward coupling into the troposphere. Our results show that Arctic sea ice loss can affect the surface climate in the midlatitudes via the stratosphere–troposphere pathway, and highlight the modulations from background mean oceanic states as well as model dependence.

     
    more » « less
  4. El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.

     
    more » « less
  5. Ensembles of climate model simulations are commonly used to separate externally forced climate change from internal climate variability. However, much of the information gained from running large ensembles is lost in traditional methods of data reduction such as linear trend analysis or large scale spatial averaging. This paper demonstrates a pattern recognition method (forced pattern filtering) that extracts patterns of externally forced climate change from large ensembles and identifies the forced climate response with up to 10 times fewer ensemble members than simple ensemble averaging. It is particularly effective at filtering out spatially coherent modes of internal variability (e.g., El Ni˜no, North Atlantic Oscillation), which would otherwise alias into estimates of regional responses to forcing. This method is used to identify forced climate responses within the 40-member Community Earth System Model (CESM) large ensemble, including an El-Ni˜no-like response to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-based estimate of the forced response is used to test statistical methods for isolating the forced response from a single realization (i.e., individual ensemble members). Low-frequency pattern filtering is found to effectively identify the forced response within individual ensemble members and is applied to the HadCRUT4 reconstruction of observed temperatures, whereby it identifies slow components of observed temperature changes that are consistent with the expected effects of anthropogenic greenhouse gas and aerosol forcing. 
    more » « less