skip to main content


Title: Mitonuclear interactions alter sex-specific longevity in a species without sex chromosomes
Impaired mitochondrial function can lead to senescence and the ageing phenotype. Theory predicts degenerative ageing phenotypes and mitochondrial pathologies may occur more frequently in males due to the matrilineal inheritance pattern of mitochondrial DNA observed in most eukaryotes. Here, we estimated the sex-specific longevity for parental and reciprocal F1 hybrid crosses for inbred lines derived from two allopatric Tigriopus californicus populations with over 20% mitochondrial DNA divergence. T. californicus lacks sex chromosomes allowing for more direct testing of mitochondrial function in sex-specific ageing. To better understand the ageing mechanism, we estimated two age-related phenotypes (mtDNA content and 8-hydroxy-20-deoxyguanosine (8-OH-dG) DNA damage) at two time points in the lifespan. Sex differences in lifespan depended on the mitochondrial and nuclear backgrounds, including differences between reciprocal F1 crosses which have different mitochondrial haplotypes on a 50 : 50 nuclear background, with nuclear contributions coming from alternative parents. Young females showed the highest mtDNA content which decreased with age, while DNA damage in males increased with age and exceed that of females 56 days after hatching. The adult sex ratio was male-biased and was attributed to complex mitonuclear interactions. Results thus demonstrate that sex differences in ageing depend on mitonuclear interactions in the absence of sex chromosomes.  more » « less
Award ID(s):
1656048
NSF-PAR ID:
10377366
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1962
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lopez, Jose (Ed.)
    Abstract Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers. 
    more » « less
  2. Katz, Laura A (Ed.)
    Abstract Sterility among hybrids is one of the most prevalent forms of reproductive isolation delineating species boundaries and is expressed disproportionately in heterogametic XY males. While hybrid male sterility (HMS) due to the “large X effect” is a well-recognized mechanism of reproductive isolation, it is less clear how HMS manifests in species that lack heteromorphic sex chromosomes. We evaluated differences in allele frequencies at approximately 460,000 SNPs between fertile and sterile F2 interpopulation male hybrids to characterize the genomic architecture of HMS in a species without sex chromosomes (Tigriopus californicus). We tested associations between HMS and mitochondrial-nuclear and/or nuclear-nuclear signatures of incompatibility. Genomic regions associated with HMS were concentrated on a single chromosome with the same primary 2-Mbp regions identified in one pair of reciprocal crosses. Gene Ontology analysis revealed that annotations associated with spermatogenesis were the most overrepresented within the implicated region, with nine protein-coding genes connected with this process found in the quantitative trait locus of chromosome 2. Our results indicate that a narrow genomic region was associated with the sterility of male hybrids in T. californicus and suggest that incompatibilities among select nuclear loci may replace the large X effect when sex chromosomes are absent. 
    more » « less
  3. Abstract

    All mitochondrial-encoded proteins and RNAs function through interactions with nuclear-encoded proteins, which are critical for mitochondrial performance and eukaryotic fitness. Coevolution maintains inter-genomic (i.e., mitonuclear) compatibility within a taxon, but hybridization can disrupt coevolved interactions, resulting in hybrid breakdown. Thus, mitonuclear incompatibilities may be important mechanisms underlying reproductive isolation and, potentially, speciation. Here we utilize Pool-seq to assess the effects of mitochondrial genotype on nuclear allele frequencies in fast- and slow-developing reciprocal inter-population F2 hybrids between relatively low-divergence populations of the intertidal copepod Tigriopus californicus. We show that mitonuclear interactions lead to elevated frequencies of coevolved (i.e., maternal) nuclear alleles on two chromosomes in crosses between populations with 1.5% or 9.6% fixed differences in mitochondrial DNA nucleotide sequence. However, we also find evidence of excess mismatched (i.e., noncoevolved) alleles on three or four chromosomes per cross, respectively, and of allele frequency differences consistent with effects involving only nuclear loci (i.e., unaffected by mitochondrial genotype). Thus, our results for low-divergence crosses suggest an underlying role for mitonuclear interactions in variation in hybrid developmental rate, but despite substantial effects of mitonuclear coevolution on individual chromosomes, no clear bias favoring coevolved interactions overall.

     
    more » « less
  4. Oxidative phosphorylation, the primary source of cellular energy in eukaryotes, requires gene products encoded in both the nuclear and mitochondrial genomes. As a result, functional integration between the genomes is essential for efficient adenosine triphosphate (ATP) generation. Although within populations this integration is presumably maintained by coevolution, the importance of mitonuclear coevolution in key biological processes such as speciation and mitochondrial disease has been questioned. In this study, we crossed populations of the intertidal copepodTigriopus californicusto disrupt putatively coevolved mitonuclear genotypes in reciprocal F2hybrids. We utilized interindividual variation in developmental rate among these hybrids as a proxy for fitness to assess the strength of selection imposed on the nuclear genome by alternate mitochondrial genotypes. Developmental rate varied among hybrid individuals, and in vitro ATP synthesis rates of mitochondria isolated from high-fitness hybrids were approximately two-fold greater than those of mitochondria isolated from low-fitness individuals. We then used Pool-seq to compare nuclear allele frequencies for high- or low-fitness hybrids. Significant biases for maternal alleles were detected on 5 (of 12) chromosomes in high-fitness individuals of both reciprocal crosses, whereas maternal biases were largely absent in low-fitness individuals. Therefore, the most fit hybrids were those with nuclear alleles that matched their mitochondrial genotype on these chromosomes, suggesting that mitonuclear effects underlie individual-level variation in developmental rate and that intergenomic compatibility is critical for high fitness. We conclude that mitonuclear interactions can have profound impacts on both physiological performance and the evolutionary trajectory of the nuclear genome.

     
    more » « less
  5. Abstract

    Mitochondrial functions are intimately reliant on proteins and RNAs encoded in both the nuclear and mitochondrial genomes, leading to inter‐genomic coevolution within taxa. Hybridization can break apart coevolved mitonuclear genotypes, resulting in decreased mitochondrial performance and reduced fitness. This hybrid breakdown is an important component of outbreeding depression and early‐stage reproductive isolation. However, the mechanisms contributing to mitonuclear interactions remain poorly resolved. Here, we scored variation in developmental rate (a proxy for fitness) among reciprocal F2interpopulation hybrids of the intertidal copepodTigriopus californicusand used RNA sequencing to assess differences in gene expression between fast‐ and slow‐developing hybrids. In total, differences in expression associated with developmental rate were detected for 2925 genes, whereas only 135 genes were differentially expressed as a result of differences in mitochondrial genotype. Upregulated expression in fast developers was enriched for genes involved in chitin‐based cuticle development, oxidation–reduction processes, hydrogen peroxide catabolic processes and mitochondrial respiratory chain complex I. In contrast, upregulation in slow developers was enriched for DNA replication, cell division, DNA damage and DNA repair. Eighty‐four nuclear‐encoded mitochondrial genes were differentially expressed between fast‐ and slow‐developing copepods, including 12 subunits of the electron transport system (ETS) which all had higher expression in fast developers than in slow developers. Nine of these genes were subunits of ETS complex I. Our results emphasize the major roles that mitonuclear interactions within the ETS, particularly in complex I, play in hybrid breakdown, and resolve strong candidate genes for involvement in mitonuclear interactions.

     
    more » « less