Abstract PremiseSeed dispersal is a critical process impacting individual plants and their communities. Plants have evolved numerous strategies and structures to disperse their seeds, but the evolutionary drivers of this diversity remain poorly understood in most lineages. We tested the hypothesis that the evolution of wind dispersal traits within the melicgrasses (Poaceae: Meliceae Link ex Endl.) was correlated with occupation of open and disturbed habitats. MethodsTo evaluate wind dispersal potential, we collected seed dispersal structures (diaspores) from 24 melicgrass species and measured falling velocity and estimated dispersal distances. Species’ affinity for open and disturbed habitats were recorded using georeferenced occurrence records and land cover maps. To test whether habitat preference and dispersal traits were correlated, we used phylogenetically informed multilevel models. ResultsMelicgrasses display several distinct morphologies associated with wind dispersal, suggesting likely convergence. Open habitat taxa had slower‐falling diaspores, consistent with increased wind dispersal potential. However, their shorter stature meant that dispersal distances, at a given wind speed, were not higher than those of their forest‐occupying relatives. Species with affinities for disturbed sites had slower‐falling diaspores and greater wind dispersal distances, largely explained by lighter diaspores. ConclusionsOur results are consistent with the hypothesized evolutionary relationship between habitat preference and dispersal strategy. However, phylogenetic inertia and other plant functions (e.g., water conservation) likely shaped dispersal trait evolution in melicgrasses. It remains unclear if dispersal trait changes were precipitated by or predated changing habitat preferences. Nevertheless, our study provides promising results and a framework for disentangling dispersal strategy evolution.
more »
« less
Adaptive associations among life history, reproductive traits, environment, and origin in the Wisconsin angiosperm flora
PremiseWe tested 25 classic and novel hypotheses regarding trait–origin, trait–trait, and trait–environment relationships to account for flora‐wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA. MethodsWe assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models. ResultsIntroduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats. ConclusionsThese findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora‐wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions.
more »
« less
- PAR ID:
- 10383952
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 107
- Issue:
- 12
- ISSN:
- 0002-9122
- Format(s):
- Medium: X Size: p. 1677-1692
- Size(s):
- p. 1677-1692
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PremiseHerbarium specimens represent an outstanding source of material with which to study plant phenological changes in response to climate change. The fine‐scale phenological annotation of such specimens is nevertheless highly time consuming and requires substantial human investment and expertise, which are difficult to rapidly mobilize. MethodsWe trained and evaluated new deep learning models to automate the detection, segmentation, and classification of four reproductive structures ofStreptanthus tortuosus(flower buds, flowers, immature fruits, and mature fruits). We used a training data set of 21 digitized herbarium sheets for which the position and outlines of 1036 reproductive structures were annotated manually. We adjusted the hyperparameters of amask R‐CNN(regional convolutional neural network) to this specific task and evaluated the resulting trained models for their ability to count reproductive structures and estimate their size. ResultsThe main outcome of our study is that the performance of detection and segmentation can vary significantly with: (i) the type of annotations used for training, (ii) the type of reproductive structures, and (iii) the size of the reproductive structures. In the case ofStreptanthus tortuosus, the method can provide quite accurate estimates (77.9% of cases) of the number of reproductive structures, which is better estimated for flowers than for immature fruits and buds. The size estimation results are also encouraging, showing a difference of only a few millimeters between the predicted and actual sizes of buds and flowers. DiscussionThis method has great potential for automating the analysis of reproductive structures in high‐resolution images of herbarium sheets. Deeper investigations regarding the taxonomic scalability of this approach and its potential improvement will be conducted in future work.more » « less
-
Abstract PremiseDioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genusAsparagus(Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. MethodsWe use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genusAsparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. ResultsWe estimate that dioecy evolved once or twice approximately 2.78−3.78 million years ago inAsparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. ConclusionsOur findings support previous work implicating a young age and the possibility of two origins of dioecy inAsparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy inAsparagusapproximately 2.78−3.78 million years ago.more » « less
-
Premise of the StudyNew growth in the spring requires resource mobilization in the vascular system at a time when xylem and phloem function are often reduced in seasonally cold climates. As a result, the timing of leaf out and/or flowering could depend on when the vascular system resumes normal function in the spring. This study investigated whether flowering time is influenced by vascular phenology in plants that flower precociously before they have leaves. MethodsFlower, leaf, and vascular phenology were monitored in pairs of precocious and non‐precocious congeners. Differences in resource allocation were quantified by measuring bud dry mass and water content throughout the year, floral hydration was modelled, and a girdling treatment completed on branches in the field. Key ResultsPrecocious flowering species invested more in floral buds the year before flowering than did their non‐precocious congeners, thus mobilizing less water in the spring, which allowed flowering before new vessel maturation. ConclusionsA shift in the timing of resource allocation in precocious flowering plants allowed them to flower before the production of mature vessels and minimized the significance of seasonal changes in vascular function to their flowering phenology. The low investment required to complete floral development in the spring when the plant vascular system is often compromised could explain why flowers can emerge before leaf out.more » « less
-
Abstract AimCommunity phylogenetic studies use information about the evolutionary relationships of species to understand the ecological processes of community assembly. A central premise of the field is that the evolution of species maps onto ecological patterns, and phylogeny reveals something more than species traits alone about the ecological mechanisms structuring communities, such as environmental filtering, competition, and facilitation. We argue, therefore, that there is a need for better understanding and modelling of the interaction of phylogeny with species traits and community composition. InnovationWe outline a new approach that identifies clades that are ecophylogenetically clustered or overdispersed and assesses whether those clades have different rates of trait evolution. Ecophylogenetic theory would predict that the traits of clustered or overdispersed clades might have evolved differently, in terms of either tempo (fast or slow) or mode (e.g., under constraint or neutrally). We suggest that modelling the evolution of independent trait data in these clades represents a strong test of whether there is an association between the ecological co‐occurrence patterns of a species and its evolutionary history. Main conclusionsUsing an empirical dataset of mammals from around the world, we identify two clades of rodents whose species tend not to co‐occur in the same local assemblages (are phylogenetically overdispersed) and find independent evidence of slower rates of body mass evolution in these clades. Our approach, which assumes nothing about the mode of species trait evolution but instead seeks to explain it using ecological information, presents a new way to examine ecophylogenetic structure.more » « less