skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of micromobility on car displacement with evidence from a natural experiment and geofencing policy
Abstract Micromobility, such as electric scooters and electric bikes—an estimated US$300 billion global market by 2030—will accelerate electrification efforts and fundamentally change urban mobility patterns. However, the impacts of micromobility adoption on traffic congestion and sustainability remain unclear. Here we leverage advances in mobile geofencing and high-resolution data to study the effects of a policy intervention, which unexpectedly banned the use of scooters during evening hours with remote shutdown, guaranteeing near perfect compliance. We test theories of habit discontinuity to provide statistical identification for whether micromobility users substitute scooters for cars. Evidence from a natural experiment in a major US city shows increases in travel time of 9–11% for daily commuting and 37% for large events. Given the growing popularity of restrictions on the use of micromobility devices globally, cities should expect to see trade-offs between micromobility restrictions designed to promote public safety and increased emissions associated with heightened congestion.  more » « less
Award ID(s):
1945332 2125390
PAR ID:
10377409
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Energy
Volume:
7
Issue:
11
ISSN:
2058-7546
Page Range / eLocation ID:
p. 1100-1108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electric(e)-scooters have emerged as a popular, ubiquitous, and first/last-mile micromobility transportation option within and across many cities worldwide. With the increasing situation-awareness and on-board computational capability, such intelligent micromobility has become a critical means of understanding the rider's interactions with other traffic constituents (called Rider-to-X Interactions, RXIs), such as pedestrians, cars, and other micromobility vehicles, as well as road environments, including curbs, road infrastructures, and traffic signs. How to interpret these complex, dynamic, and context-dependent RXIs, particularly for the rider-centric understandings across different data modalities --- such as visual, behavioral, and textual data --- is essential for enabling safer and more comfortable micromobility riding experience and the greater good of urban transportation networks. Under a naturalistic riding setting (i.e., without any unnatural constraint on rider's decision-making and maneuvering), we have designed, implemented, and evaluated a pilot Cross-modality E-scooter Naturalistic Riding Understanding System, namely CENRUS, from a human-centered AI perspective. We have conducted an extensive study with CENRUS in sensing, analyzing, and understanding the behavioral, visual, and textual annotation data of RXIs during naturalistic riding. We have also designed a novel, efficient, and usable disentanglement mechanism to conceptualize and understand the e-scooter naturalistic riding processes, and conducted extensive human-centered AI model studies. We have performed multiple downstream tasks enabled by the core model within CENRUS to derive the human-centered AI understandings and insights of complex RXIs, showcasing such downstream tasks as efficient information retrieval and scene understanding. CENRUS can serve as a foundational system for safe and easy-to-use micromobility rider assistance as well as accountable use of micromobility vehicles. 
    more » « less
  2. Electric scooters (or e-scooters) are among the most popular micromobility options that have experienced an enormous expansion in urban transportation systems across the world in recent years. Along with the increased usage of e-scooters, the increasing number of e-scooter-related injuries has also become an emerging global public health concern. However, little is known regarding the risk factors for e-scooter-related crashes and injury crashes. This study consisted of a two-phase survey questionnaire administered to a cohort of e-scooter riders (n = 210), which obtained exposure information on riders’ demographics, riding behaviors (including infrastructure selection), helmet use, and other crash-related factors. The risk ratios of riders’ self-reported involvement in an e-scooter-related crash (i.e., any crash versus no crash) and injury crash (i.e., injury crash versus non-injury crash) were estimated across exposure subcategories using the Negative Binomial regression approach. Males and frequent users of e-scooters were associated with an increased risk of e-scooter-related crashes of any type. For the e-scooter-related injury crashes, more frequently riding on bike lanes (i.e., greater than 25% of the time), either protected or unprotected, was identified as a protective factor. E-scooter-related injury crashes were more likely to occur among females, who reported riding on sidewalks and non-paved surfaces more frequently. The study may help inform public policy regarding e-scooter legislation and prioritize efforts to establish suitable road infrastructure for improved e-scooter riding safety. 
    more » « less
  3. Dean, Nicky (Ed.)
    Evidence from a policy experiment shows that public safety bans on electric scooters and electric bikes can generate unintended traffic congestion in city centres. The studied ban is found to increase travel times by 9–11% for daily evening commutes and by 37% following stadium events. 
    more » « less
  4. This paper develops a cost-effective vehicle detection and tracking system based on fusion of a 2-D LIDAR and a monocular camera to protect electric micromobility devices, especially e-scooters, by predicting the real- time danger of a car- scooter collision. The cost and size disadvantages of 3-D LIDAR sensors make them an unsuitable choice for micromobility devices. Therefore, a 2-D RPLIDAR Mapper sensor is used. Although low-cost, this sensor comes with major shortcomings such as the narrow vertical field of view and its low density of data points. Due to these factors, the sensor does not have a robust output in outdoor applications, and the measurements keep jumping and sliding on the vehicle surface. To improve the performance of the LIDAR, a single monocular camera is fused with the LIDAR data not only to detect vehicles, but also to separately detect the front and side of a target vehicle and to find its corner. It is shown that this corner detection method is more accurate than strategies that are only based on the LIDAR data. The corner measurements are used in a high-gain observer to estimate the location, velocity, and orientation of the target vehicle. The developed system is implemented on a Ninebot e-scooter platform, and multiple experiments are performed to evaluate the performance of the algorithm. 
    more » « less
  5. Micromobility usage has increased significantly in the last several years as exemplified by shared escooters and privately owned bicycles. In this study, we use traffic camera footage to observe the behavior of over 700 shared e-scooters and privately owned bicycles in Asbury Park, New Jersey. We address the following questions: (1) What are the behavioral differences between bicycle and e-scooter usage in terms of helmet use, bike lane / sidewalk use, gender split, group riding, and by time of day? (2) Are more protective conditions associated with helmet use and bike lane / sidewalk use? And (3) what is the gender split between e-scooter users and cyclists? We find notable differences in safety precautions: around one third of cyclists but no shared e-scooter users were observed wearing a helmet. Among cyclists, helmet use was more prominent among men than women. However, men were more likely to ride on the road than women. We also found that the gender split was narrower among e-scooter users, with a nearly even gender split – as opposed to cyclists, where only 21% of cyclists were observed to be women. Our findings suggest that e-scooter users take fewer safety precautions, in that they are less likely to use a bike lane and to wear a helmet. We conclude with policy implications with regards to safety and gender differences between these two modes. 
    more » « less